Nuprl Lemma : Dsep-to-sep

e:EuclideanPlane. ∀a,b:Point.  (Dsep(e;a;b)  a ≠ b)


Proof




Definitions occuring in Statement :  dist-sep: Dsep(g;a;b) euclidean-plane: EuclideanPlane geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q dist-sep: Dsep(g;a;b) member: t ∈ T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a basic-geometry: BasicGeometry squash: T euclidean-plane: EuclideanPlane true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  dist-sep_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lt_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-length_wf geo-mk-seg_wf geo-add-length-zero2 subtype_rel_self iff_weakening_equal dist-iff-lt geo-lt-sep
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution universeIsType cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis inhabitedIsType applyEquality instantiate independent_isectElimination sqequalRule because_Cache lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry setElimination rename natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination dependent_functionElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (Dsep(e;a;b)  {}\mRightarrow{}  a  \mneq{}  b)



Date html generated: 2019_10_16-PM-02_54_23
Last ObjectModification: 2019_02_18-AM-08_22_38

Theory : euclidean!plane!geometry


Home Index