Nuprl Lemma : Euclid-erect-perp-ext

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| b} . ∀c:{c:Point| Colinear(a;b;c)} .  (∃p:Point [(ab  ⊥pc ∧ ab)])


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-lsep: bc geo-sep: b geo-point: Point all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  member: t ∈ T record-select: r.x ifthenelse: if then else fi  Euclid-erect-perp geo-sep-or geo-sep-sym symmetric-point-construction Euclid-Prop1 basic-geo-sep-sym sq_stable__geo-axioms Euclid-Prop1-left-ext geo-cong-preserves-gt-prim sq_stable-geo-axioms-if sq_stable__geo-between sq_stable__geo-congruent sq_stable__geo-gt-prim sq_stable__geo-lsep any: any x sq_stable__and sq_stable__all uall: [x:A]. B[x] so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \#  b\}  .  \mforall{}c:\{c:Point|  Colinear(a;b;c)\}  .
    (\mexists{}p:Point  [(ab    \mbot{}c  pc  \mwedge{}  p  \#  ab)])



Date html generated: 2020_05_20-AM-10_03_52
Last ObjectModification: 2020_01_27-PM-07_14_43

Theory : euclidean!plane!geometry


Home Index