Nuprl Lemma : Euclid-erect-perp

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} . ∀c:{c:Point| Colinear(a;b;c)} .  (∃p:Point [(ab  ⊥pc ∧ ab)])


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd euclidean-plane: EuclideanPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs oriented-plane: OrientedPlane subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) rev_implies:  Q iff: ⇐⇒ Q geo-equilateral: EQΔ(a;b;c) so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} sq_exists: x:A [B[x]] geo-midpoint: a=m=b subtype_rel: A ⊆B prop: implies:  Q basic-geometry: BasicGeometry uall: [x:A]. B[x] cand: c∧ B and: P ∧ Q exists: x:A. B[x] or: P ∨ Q euclidean-plane: EuclideanPlane member: t ∈ T all: x:A. B[x]
Lemmas referenced :  list_ind_nil_lemma list_ind_cons_lemma equal_wf l_member_wf cons_member nil_wf cons_wf oriented-colinear-append colinear-lsep-general lsep-implies-sep lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-between-implies-colinear geo-colinear-is-colinear-set lsep-all-sym colinear-lsep-cycle geo-perp-in-iff exists_wf right-angle_wf right-angle-symmetry euclidean-plane-axioms geo-midpoint-symmetry implies-right-angle geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf set_wf geo-lsep_wf geo-perp-in_wf Euclid-Prop1 geo-between-sep symmetric-point-construction geo-sep_wf geo-colinear_wf geo-sep-sym geo-colinear-same geo-sep-or
Rules used in proof :  inlFormation inrFormation baseClosed imageMemberEquality natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality lambdaEquality independent_isectElimination instantiate dependent_set_memberFormation applyEquality productEquality independent_functionElimination independent_pairFormation productElimination sqequalRule isectElimination because_Cache dependent_pairFormation unionElimination hypothesis hypothesisEquality rename setElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .  \mforall{}c:\{c:Point|  Colinear(a;b;c)\}  .
    (\mexists{}p:Point  [(ab    \mbot{}c  pc  \mwedge{}  p  \#  ab)])



Date html generated: 2018_05_22-PM-00_09_36
Last ObjectModification: 2018_05_21-AM-01_18_40

Theory : euclidean!plane!geometry


Home Index