Nuprl Lemma : P_line-sep_wf

[eu:EuclideanParPlane]. ∀[l,m:P_line(eu)].  (P_line-sep(eu;l;m) ∈ ℙ)


Proof




Definitions occuring in Statement :  P_line-sep: P_line-sep(eu;L;M) P_line: P_line(eu) euclidean-parallel-plane: EuclideanParPlane uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T P_line-sep: P_line-sep(eu;L;M) all: x:A. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  exists_wf P_point_wf not_wf P_point-line-sep_wf P_line_wf euclidean-parallel-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis lambdaEquality productEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[eu:EuclideanParPlane].  \mforall{}[l,m:P\_line(eu)].    (P\_line-sep(eu;l;m)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-03_02_46
Last ObjectModification: 2018_08_08-PM-07_08_49

Theory : euclidean!plane!geometry


Home Index