Nuprl Lemma : between-preserves-left-3

e:EuclideanPlane. ∀A,B,C,V:Point.  (C leftof AB  A ≠  V_A_B  leftof VA)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-left: leftof bc geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B uall: [x:A]. B[x] prop: cand: c∧ B and: P ∧ Q oriented-plane: OrientedPlane member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-sep-sym geo-between-symmetry left-all-symmetry geo-point_wf all_wf geo-sep_wf geo-between_wf geo-left_wf left-between-implies-right1
Rules used in proof :  instantiate independent_isectElimination independent_pairFormation functionEquality lambdaEquality because_Cache applyEquality isectElimination productEquality independent_functionElimination productElimination hypothesis hypothesisEquality sqequalRule thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C,V:Point.    (C  leftof  AB  {}\mRightarrow{}  A  \mneq{}  V  {}\mRightarrow{}  V\_A\_B  {}\mRightarrow{}  C  leftof  VA)



Date html generated: 2019_10_16-PM-01_32_32
Last ObjectModification: 2018_10_24-PM-02_05_35

Theory : euclidean!plane!geometry


Home Index