Nuprl Lemma : between-preserves-left-5

e:EuclideanPlane. ∀A,B,C,V:Point.  (C leftof AB  B ≠  A_V_B  leftof VB)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-left: leftof bc geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T and: P ∧ Q cand: c∧ B guard: {T} uall: [x:A]. B[x] subtype_rel: A ⊆B prop: not: ¬A false: False iff: ⇐⇒ Q rev_implies:  Q basic-geometry: BasicGeometry uimplies: supposing a geo-out: out(p ab)
Lemmas referenced :  euclidean-plane-axioms geo-sep-sym left-implies-sep geo-left_wf geo-sep_wf istype-void geo-eq_wf geo-between_wf geo-congruent_wf geo-ge_wf geo-lsep_wf geo-colinear_wf geo-between-out geo-out_wf geo-between-symmetry geo-left-out-better-1 euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination hypothesis independent_functionElimination because_Cache universeIsType isectElimination applyEquality sqequalRule productIsType functionIsType independent_pairFormation independent_isectElimination instantiate inhabitedIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C,V:Point.    (C  leftof  AB  {}\mRightarrow{}  B  \mneq{}  V  {}\mRightarrow{}  A\_V\_B  {}\mRightarrow{}  C  leftof  VB)



Date html generated: 2019_10_16-PM-01_32_53
Last ObjectModification: 2018_11_27-PM-00_01_58

Theory : euclidean!plane!geometry


Home Index