Nuprl Lemma : cong-angle-between-exists
∀e:BasicGeometry. ∀a,b,c,x,y,z:Point.
  (abc ≅a xyz
  
⇒ b ≠ a
  
⇒ b ≠ c
  
⇒ y ≠ x
  
⇒ y ≠ z
  
⇒ (∃a',c',x',z':Point. (b_a_a' ∧ b_c_c' ∧ y_x_x' ∧ y_z_z' ∧ ((ba ≅ xx' ∧ aa' ≅ yx) ∧ bc ≅ zz') ∧ cc' ≅ yz)))
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz
, 
basic-geometry: BasicGeometry
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-cong-angle: abc ≅a xyz
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
cand: A c∧ B
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
uiff: uiff(P;Q)
Lemmas referenced : 
geo-proper-extend-exists, 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-cong-angle_wf, 
geo-point_wf, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
subtype_rel_self, 
basic-geometry-_wf, 
geo-congruent-iff-length, 
geo-between_wf, 
geo-congruent_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
because_Cache, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
inhabitedIsType, 
dependent_pairFormation_alt, 
independent_pairFormation, 
equalitySymmetry, 
productIsType
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.
    (abc  \mcong{}\msuba{}  xyz
    {}\mRightarrow{}  b  \mneq{}  a
    {}\mRightarrow{}  b  \mneq{}  c
    {}\mRightarrow{}  y  \mneq{}  x
    {}\mRightarrow{}  y  \mneq{}  z
    {}\mRightarrow{}  (\mexists{}a',c',x',z':Point
              (b\_a\_a'  \mwedge{}  b\_c\_c'  \mwedge{}  y\_x\_x'  \mwedge{}  y\_z\_z'  \mwedge{}  ((ba  \mcong{}  xx'  \mwedge{}  aa'  \mcong{}  yx)  \mwedge{}  bc  \mcong{}  zz')  \mwedge{}  cc'  \mcong{}  yz)))
Date html generated:
2019_10_16-PM-01_26_50
Last ObjectModification:
2018_11_07-PM-00_55_26
Theory : euclidean!plane!geometry
Home
Index