Nuprl Lemma : cong-angle-between-exists

e:BasicGeometry. ∀a,b,c,x,y,z:Point.
  (abc ≅a xyz
   b ≠ a
   b ≠ c
   y ≠ x
   y ≠ z
   (∃a',c',x',z':Point. (b_a_a' ∧ b_c_c' ∧ y_x_x' ∧ y_z_z' ∧ ((ba ≅ xx' ∧ aa' ≅ yx) ∧ bc ≅ zz') ∧ cc' ≅ yz)))


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-cong-angle: abc ≅a xyz and: P ∧ Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: cand: c∧ B basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- uiff: uiff(P;Q)
Lemmas referenced :  geo-proper-extend-exists geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle_wf geo-point_wf geo-between-symmetry geo-strict-between-implies-between subtype_rel_self basic-geometry-_wf geo-congruent-iff-length geo-between_wf geo-congruent_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis rename because_Cache universeIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule inhabitedIsType dependent_pairFormation_alt independent_pairFormation equalitySymmetry productIsType

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.
    (abc  \mcong{}\msuba{}  xyz
    {}\mRightarrow{}  b  \mneq{}  a
    {}\mRightarrow{}  b  \mneq{}  c
    {}\mRightarrow{}  y  \mneq{}  x
    {}\mRightarrow{}  y  \mneq{}  z
    {}\mRightarrow{}  (\mexists{}a',c',x',z':Point
              (b\_a\_a'  \mwedge{}  b\_c\_c'  \mwedge{}  y\_x\_x'  \mwedge{}  y\_z\_z'  \mwedge{}  ((ba  \mcong{}  xx'  \mwedge{}  aa'  \mcong{}  yx)  \mwedge{}  bc  \mcong{}  zz')  \mwedge{}  cc'  \mcong{}  yz)))



Date html generated: 2019_10_16-PM-01_26_50
Last ObjectModification: 2018_11_07-PM-00_55_26

Theory : euclidean!plane!geometry


Home Index