Nuprl Lemma : cong-angle-out-exists2

e:BasicGeometry. ∀a,b,c,x,y,z:Point.
  (abc ≅a xyz
   a ≠ b
   c ≠ b
   x ≠ y
   z ≠ y
   (∃a',c',x',z':Point. (out(b a'a) ∧ out(b c'c) ∧ out(y x'x) ∧ out(y z'z) ∧ a'bc' ≅a x'yz')))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-cong-angle: abc ≅a xyz and: P ∧ Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry cand: c∧ B geo-out: out(p ab)
Lemmas referenced :  geo-between-out geo-sep-sym geo-between-sep geo-out_inversion geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle_wf geo-point_wf geo-out_wf geo-between-trivial geo-between_wf geo-congruent_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination because_Cache independent_functionElimination hypothesis hypothesisEquality universeIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule inhabitedIsType dependent_pairFormation_alt independent_pairFormation productIsType

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.
    (abc  \mcong{}\msuba{}  xyz
    {}\mRightarrow{}  a  \mneq{}  b
    {}\mRightarrow{}  c  \mneq{}  b
    {}\mRightarrow{}  x  \mneq{}  y
    {}\mRightarrow{}  z  \mneq{}  y
    {}\mRightarrow{}  (\mexists{}a',c',x',z':Point.  (out(b  a'a)  \mwedge{}  out(b  c'c)  \mwedge{}  out(y  x'x)  \mwedge{}  out(y  z'z)  \mwedge{}  a'bc'  \mcong{}\msuba{}  x'yz')))



Date html generated: 2019_10_16-PM-01_26_21
Last ObjectModification: 2018_12_11-PM-11_08_50

Theory : euclidean!plane!geometry


Home Index