Nuprl Lemma : geo-Aparallel_functionality

[e1:EuclideanPlane]. ∀[l,m,l2,m2:Line].  ({uiff(l || m;l2 || m2)}) supposing (m ≡ m2 and l ≡ l2)


Proof




Definitions occuring in Statement :  geo-Aparallel: || m geo-line-eq: l ≡ m geo-line: Line euclidean-plane: EuclideanPlane uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] guard: {T}
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a geoline: LINE so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B all: x:A. B[x] so_apply: x[s1;s2] implies:  Q guard: {T} uiff: uiff(P;Q) and: P ∧ Q geo-Aparallel: || m not: ¬A false: False prop: squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  quotient-member-eq geo-line-eq_wf geo-line_wf geo-line-eq-equiv geo-intersect_wf geoline-subtype1 geo-Aparallel_wf squash_wf true_wf geoline_wf subtype_rel_self iff_weakening_equal euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache lambdaEquality hypothesisEquality applyEquality hypothesis dependent_functionElimination independent_isectElimination independent_functionElimination independent_pairFormation voidElimination addLevel imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality productElimination cumulativity isectEquality independent_pairEquality isect_memberEquality

Latex:
\mforall{}[e1:EuclideanPlane].  \mforall{}[l,m,l2,m2:Line].    (\{uiff(l  ||  m;l2  ||  m2)\})  supposing  (m  \mequiv{}  m2  and  l  \mequiv{}  l2)



Date html generated: 2018_05_22-PM-01_09_39
Last ObjectModification: 2018_05_11-PM-02_17_58

Theory : euclidean!plane!geometry


Home Index