Nuprl Lemma : geo-CC_functionality
∀[g:EuclideanPlane]. ∀[a,b:Point]. ∀[c:{c:Point| a ≠ c} ]. ∀[d:{d:Point| StrictOverlap(a;b;c;d)} ]. ∀[a',b':Point].
∀[c':{c':Point| a' ≠ c'} ]. ∀[d':{d':Point| StrictOverlap(a';b';c';d')} ].
  (CC(a;b;c;d) ≡ CC(a';b';c';d')) supposing (d ≡ d' and c ≡ c' and b ≡ b' and a ≡ a')
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-CC: CC(a;b;c;d)
, 
circle-strict-overlap: StrictOverlap(a;b;c;d)
, 
geo-eq: a ≡ b
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
euclidean-plane: EuclideanPlane
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-eq: a ≡ b
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
, 
and: P ∧ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
oriented-plane: OrientedPlane
, 
basic-geometry: BasicGeometry
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
geo-CC_wf, 
geo-eq_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
circle-strict-overlap_wf, 
geo-sep_wf, 
geo-point_wf, 
sq_stable__geo-eq, 
geo-eq_inversion, 
Euclid-Prop7, 
geo-left_wf, 
geo-congruent-iff-length, 
geo-left_functionality, 
geo-eq_weakening, 
geo-congruent_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
because_Cache, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality_alt, 
functionIsTypeImplies, 
universeIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
setIsType, 
voidElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[g:EuclideanPlane].  \mforall{}[a,b:Point].  \mforall{}[c:\{c:Point|  a  \mneq{}  c\}  ].  \mforall{}[d:\{d:Point|  StrictOverlap(a;b;c;d)\}  ].
\mforall{}[a',b':Point].  \mforall{}[c':\{c':Point|  a'  \mneq{}  c'\}  ].  \mforall{}[d':\{d':Point|  StrictOverlap(a';b';c';d')\}  ].
    (CC(a;b;c;d)  \mequiv{}  CC(a';b';c';d'))  supposing  (d  \mequiv{}  d'  and  c  \mequiv{}  c'  and  b  \mequiv{}  b'  and  a  \mequiv{}  a')
Date html generated:
2019_10_16-PM-01_48_22
Last ObjectModification:
2019_07_16-AM-11_38_02
Theory : euclidean!plane!geometry
Home
Index