Nuprl Lemma : geo-add-length-cancel-left-lt3

e:BasicGeometry. ∀y,z:Length.  (z < ⇐⇒ z < y)


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-add-length: q geo-zero-length: 0 geo-length-type: Length basic-geometry: BasicGeometry all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} geo-zero-length: 0 geo-lt: p < q exists: x:A. B[x] cand: c∧ B basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane rev_uimplies: rev_uimplies(P;Q) geo_ge: geo_ge(e; p; q)
Lemmas referenced :  geo-lt_wf geo-add-length_wf geo-zero-length_wf geo-length-type_wf basic-geometry_wf geo-add-length-cancel-left-lt equal_wf geo-add-length-comm iff_weakening_equal geo-add-length-zero squash_wf true_wf geo-sep_wf geo-le_wf geo-length_wf geo-mk-seg_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-le-add1 geo-le_functionality_wrt_implies geo-le_weakening geo-add-length_functionality_wrt_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType independent_functionElimination applyEquality lambdaEquality_alt imageElimination because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination dependent_pairFormation_alt promote_hyp productIsType setElimination rename instantiate dependent_functionElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}y,z:Length.    (z  <  0  +  y  \mLeftarrow{}{}\mRightarrow{}  z  <  y)



Date html generated: 2019_10_16-PM-01_20_17
Last ObjectModification: 2018_12_03-PM-09_22_21

Theory : euclidean!plane!geometry


Home Index