Nuprl Lemma : geo-between-implies-out
∀e:BasicGeometry. ∀p,a,b:Point.  ((∃c:Point. (p ≠ c ∧ p_c_a ∧ p_c_b)) 
⇒ out(p ab))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
basic-geometry: BasicGeometry
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
cand: A c∧ B
, 
basic-geometry: BasicGeometry
, 
geo-out: out(p ab)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-between-sep, 
geo-between_wf, 
geo-sep_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
exists_wf, 
geo-between-same-side
Rules used in proof : 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
productEquality, 
lambdaEquality, 
sqequalRule, 
instantiate, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:BasicGeometry.  \mforall{}p,a,b:Point.    ((\mexists{}c:Point.  (p  \mneq{}  c  \mwedge{}  p\_c\_a  \mwedge{}  p\_c\_b))  {}\mRightarrow{}  out(p  ab))
Date html generated:
2017_10_02-PM-06_27_14
Last ObjectModification:
2017_10_02-PM-02_16_04
Theory : euclidean!plane!geometry
Home
Index