Nuprl Lemma : geo-between-implies-out

e:BasicGeometry. ∀p,a,b:Point.  ((∃c:Point. (p ≠ c ∧ p_c_a ∧ p_c_b))  out(p ab))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) basic-geometry: BasicGeometry geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  cand: c∧ B basic-geometry: BasicGeometry geo-out: out(p ab) so_apply: x[s] so_lambda: λ2x.t[x] guard: {T} subtype_rel: A ⊆B prop: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q exists: x:A. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-between-sep geo-between_wf geo-sep_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf exists_wf geo-between-same-side
Rules used in proof :  independent_functionElimination independent_pairFormation because_Cache productEquality lambdaEquality sqequalRule instantiate applyEquality hypothesis independent_isectElimination isectElimination hypothesisEquality dependent_functionElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}p,a,b:Point.    ((\mexists{}c:Point.  (p  \mneq{}  c  \mwedge{}  p\_c\_a  \mwedge{}  p\_c\_b))  {}\mRightarrow{}  out(p  ab))



Date html generated: 2017_10_02-PM-06_27_14
Last ObjectModification: 2017_10_02-PM-02_16_04

Theory : euclidean!plane!geometry


Home Index