Nuprl Lemma : geo-between-same-side2-or
∀e:BasicGeometry. ∀[A,B,C,D:Point].  (¬¬(B(BCD) ∨ B(BDC))) supposing (A # B and B(ABC) and B(ABD))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-between: B(abc)
, 
geo-sep: a # b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
Definitions unfolded in proof : 
guard: {T}
, 
prop: ℙ
, 
basic-geometry-: BasicGeometry-
, 
euclidean-plane: EuclideanPlane
, 
subtype_rel: A ⊆r B
, 
basic-geometry: BasicGeometry
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
geo-sep_wf, 
istype-void, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-between_wf, 
basic-geometry-_wf, 
subtype_rel_self, 
geo-between-exchange3, 
geo-between-inner-trans, 
geo-between-symmetry, 
geo-between-same-side
Rules used in proof : 
isectIsTypeImplies, 
isect_memberEquality_alt, 
inhabitedIsType, 
functionIsTypeImplies, 
lambdaEquality_alt, 
unionIsType, 
functionIsType, 
inrFormation_alt, 
independent_pairFormation, 
voidElimination, 
universeIsType, 
instantiate, 
sqequalRule, 
applyEquality, 
because_Cache, 
inlFormation_alt, 
independent_functionElimination, 
hypothesis, 
independent_isectElimination, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
thin, 
cut, 
introduction, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:BasicGeometry.  \mforall{}[A,B,C,D:Point].    (\mneg{}\mneg{}(B(BCD)  \mvee{}  B(BDC)))  supposing  (A  \#  B  and  B(ABC)  and  B(ABD))
Date html generated:
2019_10_29-AM-09_14_42
Last ObjectModification:
2019_10_18-PM-03_17_48
Theory : euclidean!plane!geometry
Home
Index