Nuprl Lemma : geo-ge-cases
∀e:BasicGeometry. ∀a,b,c,d:Point.  (¬¬((ab > cd ∨ cd > ab) ∨ ab ≅ cd))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-gt: cd > ab
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
Lemmas referenced : 
geo-le-cases2, 
geo-length_wf, 
geo-mk-seg_wf, 
double-negation-hyp-elim, 
geo-lt_wf, 
equal_wf, 
geo-length-type_wf, 
not_wf, 
geo-gt_wf, 
geo-congruent_wf, 
geo-congruent-iff-length, 
istype-void, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-lt-implies-gt-strong
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
sqequalRule, 
unionEquality, 
applyEquality, 
independent_functionElimination, 
unionElimination, 
inrFormation_alt, 
productElimination, 
independent_isectElimination, 
unionIsType, 
universeIsType, 
functionIsType, 
equalityIstype, 
voidElimination, 
instantiate, 
inhabitedIsType, 
inlFormation_alt
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    (\mneg{}\mneg{}((ab  >  cd  \mvee{}  cd  >  ab)  \mvee{}  ab  \mcong{}  cd))
Date html generated:
2019_10_16-PM-01_37_14
Last ObjectModification:
2019_07_08-PM-00_27_02
Theory : euclidean!plane!geometry
Home
Index