Nuprl Lemma : geo-inner-pasch-ex2

e:HeytingGeometry. ∀a,b:Point. ∀c:{c:Point| ab} . ∀p,q:Point.  (a-p-c  b-q-c  (∃x:Point. (b_x_p ∧ a_x_q)))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-strict-between: a-b-c geo-between: a_b_c geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] guard: {T} uimplies: supposing a prop: uall: [x:A]. B[x] basic-geometry-: BasicGeometry- euclidean-plane: EuclideanPlane heyting-geometry: HeytingGeometry subtype_rel: A ⊆B cand: c∧ B and: P ∧ Q exists: x:A. B[x] implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  geo-triangle_wf set_wf geo-primitives_wf euclidean-plane_wf heyting-geometry_wf subtype_rel_transitivity heyting-geometry-subtype euclidean-plane-subtype geo-point_wf geo-strict-between_wf geo-between_wf geo-between-symmetry geo-left-axioms_wf euclidean-plane-structure-subtype basic-geo-axioms_wf euclidean-plane-structure_wf subtype_rel_self geo-strict-between-implies-between geo-inner-pasch-ex
Rules used in proof :  lambdaEquality rename setElimination independent_pairFormation independent_isectElimination because_Cache cumulativity productEquality setEquality isectElimination instantiate sqequalRule applyEquality dependent_pairFormation productElimination independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  c  \#  ab\}  .  \mforall{}p,q:Point.
    (a-p-c  {}\mRightarrow{}  b-q-c  {}\mRightarrow{}  (\mexists{}x:Point.  (b\_x\_p  \mwedge{}  a\_x\_q)))



Date html generated: 2017_10_02-PM-07_02_54
Last ObjectModification: 2017_08_06-PM-10_09_42

Theory : euclidean!plane!geometry


Home Index