Nuprl Lemma : geo-inner-pasch-ex2
∀e:HeytingGeometry. ∀a,b:Point. ∀c:{c:Point| c # ab} . ∀p,q:Point.  (a-p-c 
⇒ b-q-c 
⇒ (∃x:Point. (b_x_p ∧ a_x_q)))
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-strict-between: a-b-c
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry-: BasicGeometry-
, 
euclidean-plane: EuclideanPlane
, 
heyting-geometry: HeytingGeometry
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-triangle_wf, 
set_wf, 
geo-primitives_wf, 
euclidean-plane_wf, 
heyting-geometry_wf, 
subtype_rel_transitivity, 
heyting-geometry-subtype, 
euclidean-plane-subtype, 
geo-point_wf, 
geo-strict-between_wf, 
geo-between_wf, 
geo-between-symmetry, 
geo-left-axioms_wf, 
euclidean-plane-structure-subtype, 
basic-geo-axioms_wf, 
euclidean-plane-structure_wf, 
subtype_rel_self, 
geo-strict-between-implies-between, 
geo-inner-pasch-ex
Rules used in proof : 
lambdaEquality, 
rename, 
setElimination, 
independent_pairFormation, 
independent_isectElimination, 
because_Cache, 
cumulativity, 
productEquality, 
setEquality, 
isectElimination, 
instantiate, 
sqequalRule, 
applyEquality, 
dependent_pairFormation, 
productElimination, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  c  \#  ab\}  .  \mforall{}p,q:Point.
    (a-p-c  {}\mRightarrow{}  b-q-c  {}\mRightarrow{}  (\mexists{}x:Point.  (b\_x\_p  \mwedge{}  a\_x\_q)))
Date html generated:
2017_10_02-PM-07_02_54
Last ObjectModification:
2017_08_06-PM-10_09_42
Theory : euclidean!plane!geometry
Home
Index