Nuprl Lemma : geo-lt-or

e:EuclideanPlane. ∀a,b,c,d,x,y:Point.  (|ab| < |cd|  (|ab| < |xy| ∨ |xy| < |cd|))


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T euclidean-plane: EuclideanPlane uall: [x:A]. B[x] basic-geometry: BasicGeometry subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q prop: guard: {T} uimplies: supposing a
Lemmas referenced :  geo-sep-or geo-length_wf1 geo-mk-seg_wf geo-sep-iff-or-lt geo-lt_wf geo-length_wf geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-lt_transitivity geo-le_weakening-lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis isectElimination sqequalRule hypothesisEquality applyEquality lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry productElimination independent_functionElimination inlFormation_alt universeIsType dependent_set_memberEquality_alt instantiate independent_isectElimination unionElimination inrFormation_alt

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,x,y:Point.    (|ab|  <  |cd|  {}\mRightarrow{}  (|ab|  <  |xy|  \mvee{}  |xy|  <  |cd|))



Date html generated: 2019_10_16-PM-02_33_49
Last ObjectModification: 2019_07_26-AM-11_38_27

Theory : euclidean!plane!geometry


Home Index