Nuprl Lemma : hp-angle-sum-eq-straight-angle2
∀e:EuclideanPlane. ∀a,b,c,x,y,z,a',b',c',x',y',z',i,j,k,i',j',k':Point.
  (abc + xyz ≅ ijk 
⇒ a'b'c' + x'y'z' ≅ i'j'k' 
⇒ abc ≅a a'b'c' 
⇒ xyz ≅a x'y'z' 
⇒ i-j-k 
⇒ i'-j'-k')
Proof
Definitions occuring in Statement : 
hp-angle-sum: abc + xyz ≅ def
, 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-strict-between: a-b-c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
Lemmas referenced : 
hp-angle-sum-eq-straight-angle, 
geo-strict-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-cong-angle_wf, 
hp-angle-sum_wf, 
geo-point_wf, 
hp-angle-sum-subst2, 
geo-cong-angle-symm2, 
hp-angle-sum-subst1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
inhabitedIsType
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,a',b',c',x',y',z',i,j,k,i',j',k':Point.
    (abc  +  xyz  \mcong{}  ijk
    {}\mRightarrow{}  a'b'c'  +  x'y'z'  \mcong{}  i'j'k'
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  a'b'c'
    {}\mRightarrow{}  xyz  \mcong{}\msuba{}  x'y'z'
    {}\mRightarrow{}  i-j-k
    {}\mRightarrow{}  i'-j'-k')
Date html generated:
2019_10_16-PM-02_25_48
Last ObjectModification:
2019_08_02-PM-00_34_51
Theory : euclidean!plane!geometry
Home
Index