Nuprl Lemma : hp-angle-sum-eq-straight-angle2

e:EuclideanPlane. ∀a,b,c,x,y,z,a',b',c',x',y',z',i,j,k,i',j',k':Point.
  (abc xyz ≅ ijk  a'b'c' x'y'z' ≅ i'j'k'  abc ≅a a'b'c'  xyz ≅a x'y'z'  i-j-k  i'-j'-k')


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry
Lemmas referenced :  hp-angle-sum-eq-straight-angle geo-strict-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle_wf hp-angle-sum_wf geo-point_wf hp-angle-sum-subst2 geo-cong-angle-symm2 hp-angle-sum-subst1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality because_Cache independent_functionElimination hypothesis universeIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule inhabitedIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,a',b',c',x',y',z',i,j,k,i',j',k':Point.
    (abc  +  xyz  \mcong{}  ijk
    {}\mRightarrow{}  a'b'c'  +  x'y'z'  \mcong{}  i'j'k'
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  a'b'c'
    {}\mRightarrow{}  xyz  \mcong{}\msuba{}  x'y'z'
    {}\mRightarrow{}  i-j-k
    {}\mRightarrow{}  i'-j'-k')



Date html generated: 2019_10_16-PM-02_25_48
Last ObjectModification: 2019_08_02-PM-00_34_51

Theory : euclidean!plane!geometry


Home Index