Nuprl Lemma : left-not-between
∀g:EuclideanPlane. ∀a,b,c:Point.  (a leftof cb 
⇒ (¬a_b_c))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-left: a leftof bc
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
true: True
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
geo-eq: a ≡ b
Lemmas referenced : 
minimal-not-not-excluded-middle, 
minimal-double-negation-hyp-elim, 
true_wf, 
geo-sep_wf, 
or_wf, 
false_wf, 
geo-point_wf, 
geo-left_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-between_wf, 
left-convex, 
left-implies-sep, 
geo-sep-sym, 
left-symmetry, 
geo-sep-irrefl2, 
geo-between-trivial
Rules used in proof : 
natural_numberEquality, 
unionElimination, 
functionEquality, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
voidElimination, 
independent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
because_Cache, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
dependent_functionElimination, 
independent_pairFormation, 
inrFormation, 
productEquality, 
inlFormation
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  leftof  cb  {}\mRightarrow{}  (\mneg{}a\_b\_c))
Date html generated:
2017_10_02-PM-04_40_31
Last ObjectModification:
2017_08_08-PM-01_49_39
Theory : euclidean!plane!geometry
Home
Index