Nuprl Lemma : midpoints-preserve-congruence
∀e:BasicGeometry. ∀a,b,c,a',b',c':Point.
  ((((a'=b'=c' ∧ a=b=c) ∧ a' ≠ c' ∧ a ≠ c) ∧ ac ≅ a'c') 
⇒ (ab ≅ a'b' ∧ bc ≅ b'c'))
Proof
Definitions occuring in Statement : 
geo-midpoint: a=m=b
, 
basic-geometry: BasicGeometry
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
geo-midpoint: a=m=b
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
basic-geometry: BasicGeometry
Lemmas referenced : 
geo-midpoint_wf, 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-congruent_wf, 
geo-point_wf, 
geo-bet-sep-cong-tri-exists, 
midpoint-sep, 
geo-congruent-iff-length, 
geo-congruent-symmetry, 
geo-congruent_functionality, 
geo-eq_weakening, 
geo-midpoint_functionality, 
at-most-one-midpoint, 
geo-length-flip, 
geo-congruent-left-comm, 
euclidean-plane-axioms, 
geo-inner-three-segment
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_pairFormation, 
hypothesis, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',b',c':Point.
    ((((a'=b'=c'  \mwedge{}  a=b=c)  \mwedge{}  a'  \mneq{}  c'  \mwedge{}  a  \mneq{}  c)  \mwedge{}  ac  \00D0  a'c')  {}\mRightarrow{}  (ab  \00D0  a'b'  \mwedge{}  bc  \00D0  b'c'))
Date html generated:
2017_10_02-PM-06_35_03
Last ObjectModification:
2017_08_16-AM-11_24_57
Theory : euclidean!plane!geometry
Home
Index