Nuprl Lemma : midpoints-preserve-congruence

e:BasicGeometry. ∀a,b,c,a',b',c':Point.
  ((((a'=b'=c' ∧ a=b=c) ∧ a' ≠ c' ∧ a ≠ c) ∧ ac ≅ a'c')  (ab ≅ a'b' ∧ bc ≅ b'c'))


Proof




Definitions occuring in Statement :  geo-midpoint: a=m=b basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a exists: x:A. B[x] geo-midpoint: a=m=b geo-cong-tri: Cong3(abc,a'b'c') uiff: uiff(P;Q) iff: ⇐⇒ Q basic-geometry: BasicGeometry
Lemmas referenced :  geo-midpoint_wf geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-congruent_wf geo-point_wf geo-bet-sep-cong-tri-exists midpoint-sep geo-congruent-iff-length geo-congruent-symmetry geo-congruent_functionality geo-eq_weakening geo-midpoint_functionality at-most-one-midpoint geo-length-flip geo-congruent-left-comm euclidean-plane-axioms geo-inner-three-segment
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut independent_pairFormation hypothesis productEquality introduction extract_by_obid isectElimination hypothesisEquality because_Cache applyEquality instantiate independent_isectElimination sqequalRule dependent_functionElimination independent_functionElimination equalitySymmetry equalityTransitivity

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',b',c':Point.
    ((((a'=b'=c'  \mwedge{}  a=b=c)  \mwedge{}  a'  \mneq{}  c'  \mwedge{}  a  \mneq{}  c)  \mwedge{}  ac  \00D0  a'c')  {}\mRightarrow{}  (ab  \00D0  a'b'  \mwedge{}  bc  \00D0  b'c'))



Date html generated: 2017_10_02-PM-06_35_03
Last ObjectModification: 2017_08_16-AM-11_24_57

Theory : euclidean!plane!geometry


Home Index