Nuprl Lemma : p4-triangles

e:HeytingGeometry. ∀a,b,c,x,y,z:Point.
  (a bc  yz  ab ≅ xy  ac ≅ xz  bac ≅a yxz  ((bc ≅ yz ∧ Cong3(abc,xyz)) ∧ abc ≅a xyz ∧ bca ≅a yzx))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-cong-tri: Cong3(abc,a'b'c') geo-cong-angle: abc ≅a xyz geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: geo-cong-angle: abc ≅a xyz exists: x:A. B[x] heyting-geometry: HeytingGeometry uiff: uiff(P;Q) geo-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced :  geo-cong-angle_wf euclidean-plane-subtype-basic heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf basic-geometry_wf geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-plane-structure_wf geo-primitives_wf geo-triangle_wf geo-point_wf geo-inner-five-segment geo-congruent-iff-length geo-length-flip geo-inner-three-segment geo-between-symmetry geo-triangle-property geo-between-trivial geo-between_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut independent_pairFormation hypothesis sqequalHypSubstitution productElimination thin universeIsType introduction extract_by_obid isectElimination hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination dependent_pairFormation_alt productIsType

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,x,y,z:Point.
    (a  \#  bc
    {}\mRightarrow{}  x  \#  yz
    {}\mRightarrow{}  ab  \mcong{}  xy
    {}\mRightarrow{}  ac  \mcong{}  xz
    {}\mRightarrow{}  bac  \mcong{}\msuba{}  yxz
    {}\mRightarrow{}  ((bc  \mcong{}  yz  \mwedge{}  Cong3(abc,xyz))  \mwedge{}  abc  \mcong{}\msuba{}  xyz  \mwedge{}  bca  \mcong{}\msuba{}  yzx))



Date html generated: 2019_10_16-PM-02_09_49
Last ObjectModification: 2018_11_08-AM-11_30_05

Theory : euclidean!plane!geometry


Home Index