Nuprl Lemma : pgeo-finite-plane_wf

pg:ProjectivePlane. (pgeo-finite-plane(pg) ∈ ℙ)


Proof




Definitions occuring in Statement :  pgeo-finite-plane: pgeo-finite-plane(pg) projective-plane: ProjectivePlane prop: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  cand: c∧ B exists: x:A. B[x] so_apply: x[s] nat: uimplies: supposing a guard: {T} subtype_rel: A ⊆B so_lambda: λ2x.t[x] uall: [x:A]. B[x] and: P ∧ Q prop: pgeo-finite-plane: pgeo-finite-plane(pg) member: t ∈ T all: x:A. B[x]
Lemmas referenced :  pgeo-plsep_wf decidable_wf all_wf pgeo-line_wf int_seg_wf pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-point_wf equipollent_wf nat_wf exists_wf
Rules used in proof :  productElimination because_Cache rename setElimination natural_numberEquality independent_isectElimination instantiate applyEquality hypothesisEquality lambdaEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction productEquality sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}pg:ProjectivePlane.  (pgeo-finite-plane(pg)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-00_59_30
Last ObjectModification: 2018_01_10-AM-09_59_56

Theory : euclidean!plane!geometry


Home Index