Nuprl Lemma : pgeo-plsep-class_wf
∀[g:ProjectivePlane]. ∀[pc:PointClass]. ∀[lc:LineClass].  (pc # lc ∈ ℙ)
Proof
Definitions occuring in Statement : 
pgeo-plsep-class: pc # lc
, 
pgeo-line-class: LineClass
, 
pgeo-point-class: PointClass
, 
projective-plane: ProjectivePlane
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
pgeo-line-class: LineClass
, 
all: ∀x:A. B[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
pgeo-point-class: PointClass
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
pgeo-plsep-class: pc # lc
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
pgeo-plsep_wf, 
pgeo-leq-equiv, 
pgeo-leq_wf, 
pgeo-line-class_wf, 
pgeo-peq-equiv, 
pgeo-peq_wf, 
subtype_quotient, 
pgeo-point-class_wf, 
equal_wf, 
pgeo-line_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
projective-plane-structure_subtype, 
pgeo-point_wf, 
exists_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_functionElimination, 
productEquality, 
because_Cache, 
lambdaEquality, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:ProjectivePlane].  \mforall{}[pc:PointClass].  \mforall{}[lc:LineClass].    (pc  \#  lc  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-00_56_44
Last ObjectModification:
2018_01_03-PM-03_50_35
Theory : euclidean!plane!geometry
Home
Index