Nuprl Lemma : pgeo-plsep-class_wf

[g:ProjectivePlane]. ∀[pc:PointClass]. ∀[lc:LineClass].  (pc lc ∈ ℙ)


Proof




Definitions occuring in Statement :  pgeo-plsep-class: pc lc pgeo-line-class: LineClass pgeo-point-class: PointClass projective-plane: ProjectivePlane uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] pgeo-line-class: LineClass all: x:A. B[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] pgeo-point-class: PointClass and: P ∧ Q prop: so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B pgeo-plsep-class: pc lc member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  pgeo-plsep_wf pgeo-leq-equiv pgeo-leq_wf pgeo-line-class_wf pgeo-peq-equiv pgeo-peq_wf subtype_quotient pgeo-point-class_wf equal_wf pgeo-line_wf pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-point_wf exists_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality dependent_functionElimination productEquality because_Cache lambdaEquality independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:ProjectivePlane].  \mforall{}[pc:PointClass].  \mforall{}[lc:LineClass].    (pc  \#  lc  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-00_56_44
Last ObjectModification: 2018_01_03-PM-03_50_35

Theory : euclidean!plane!geometry


Home Index