Nuprl Lemma : pgeo-psep-sym

g:ProjectivePlane. ∀p,q:Point.  (p ≠  q ≠ p)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-psep: a ≠ b pgeo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: and: P ∧ Q member: t ∈ T exists: x:A. B[x] pgeo-psep: a ≠ b implies:  Q all: x:A. B[x] cand: c∧ B
Lemmas referenced :  pgeo-point_wf pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-psep_wf plsep-implies-ptriangle pgeo-incident_wf pgeo-line_wf pgeo-join_wf pgeo-plsep-to-lsep pgeo-plsep-to-psep incident-join-second use-triangle-axiom2 plsep-join-implies incident-join-first projective-plane-subtype-basic pgeo-meet-implies-plsep
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate applyEquality isectElimination independent_functionElimination hypothesisEquality dependent_functionElimination extract_by_obid introduction rename thin productElimination sqequalHypSubstitution hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productEquality setEquality setElimination lambdaEquality independent_pairFormation

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p,q:Point.    (p  \mneq{}  q  {}\mRightarrow{}  q  \mneq{}  p)



Date html generated: 2018_05_22-PM-00_42_37
Last ObjectModification: 2017_11_30-AM-10_34_11

Theory : euclidean!plane!geometry


Home Index