Nuprl Lemma : plsep-implies-ptriangle
∀g:ProjectivePlane. ∀p:Point. ∀l:Line. ∀q:Point. ∀s:q ≠ p.  (p ≠ l 
⇒ q I l 
⇒ (∃r:Point. (r I l ∧ r ≠ q ∨ p)))
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-join: p ∨ q
, 
pgeo-psep: a ≠ b
, 
pgeo-incident: a I b
, 
pgeo-plsep: a ≠ b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
Lemmas referenced : 
pgeo-line_wf, 
pgeo-point_wf, 
pgeo-psep_wf, 
pgeo-plsep_wf, 
pgeo-primitives_wf, 
projective-plane-structure_subtype, 
pgeo-incident_wf, 
point-implies-plsep-exists, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
pgeo-plsep-to-psep, 
pgeo-join_wf, 
Meet, 
pgeo-plsep-to-lsep, 
projective-plane-subtype-basic, 
pgeo-plsep-implies-join, 
use-triangle-axiom1
Rules used in proof : 
productElimination, 
because_Cache, 
independent_functionElimination, 
sqequalRule, 
independent_isectElimination, 
isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
setEquality, 
setElimination, 
lambdaEquality, 
productEquality, 
independent_pairFormation, 
dependent_pairFormation, 
rename
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p:Point.  \mforall{}l:Line.  \mforall{}q:Point.  \mforall{}s:q  \mneq{}  p.
    (p  \mneq{}  l  {}\mRightarrow{}  q  I  l  {}\mRightarrow{}  (\mexists{}r:Point.  (r  I  l  \mwedge{}  r  \mneq{}  q  \mvee{}  p)))
Date html generated:
2018_05_22-PM-00_42_27
Last ObjectModification:
2017_11_28-PM-05_41_03
Theory : euclidean!plane!geometry
Home
Index