Nuprl Lemma : proj-point-sep-symmetry
∀e:EuclideanParPlane. ∀x,y:Point + Line.  (proj-point-sep(e;x;y) 
⇒ proj-point-sep(e;y;x))
Proof
Definitions occuring in Statement : 
proj-point-sep: proj-point-sep(eu;p;q)
, 
euclidean-parallel-plane: EuclideanParPlane
, 
geo-line: Line
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
union: left + right
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
true: True
, 
and: P ∧ Q
, 
euclidean-parallel-plane: EuclideanParPlane
, 
member: t ∈ T
, 
proj-point-sep: proj-point-sep(eu;p;q)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-line_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
euclidean-parallel-plane_wf, 
subtype_rel_transitivity, 
euclidean-planes-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
proj-point-sep_wf, 
geo-intersect-symmetry, 
euclidean-plane-axioms
Rules used in proof : 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
unionEquality, 
isectElimination, 
because_Cache, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalHypSubstitution, 
thin, 
unionElimination, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}x,y:Point  +  Line.    (proj-point-sep(e;x;y)  {}\mRightarrow{}  proj-point-sep(e;y;x))
Date html generated:
2018_05_22-PM-01_13_52
Last ObjectModification:
2018_05_21-PM-02_21_22
Theory : euclidean!plane!geometry
Home
Index