Nuprl Lemma : proj-point-sep_wf

[e:EuclideanParPlane]. ∀[p,q:Point Line].  (proj-point-sep(e;p;q) ∈ ℙ)


Proof




Definitions occuring in Statement :  proj-point-sep: proj-point-sep(eu;p;q) euclidean-parallel-plane: EuclideanParPlane geo-line: Line geo-point: Point uall: [x:A]. B[x] prop: member: t ∈ T union: left right
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T proj-point-sep: proj-point-sep(eu;p;q) all: x:A. B[x] implies:  Q subtype_rel: A ⊆B prop: euclidean-parallel-plane: EuclideanParPlane guard: {T} uimplies: supposing a
Lemmas referenced :  geo-sep_wf true_wf equal_wf geo-intersect_wf geoline-subtype1 geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-planes-subtype subtype_rel_transitivity euclidean-parallel-plane_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-line_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesisEquality equalityTransitivity hypothesis equalitySymmetry thin because_Cache lambdaFormation unionElimination extract_by_obid sqequalHypSubstitution isectElimination applyEquality dependent_functionElimination independent_functionElimination setElimination rename axiomEquality unionEquality instantiate independent_isectElimination isect_memberEquality

Latex:
\mforall{}[e:EuclideanParPlane].  \mforall{}[p,q:Point  +  Line].    (proj-point-sep(e;p;q)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-02_42_53
Last ObjectModification: 2018_08_21-PM-02_00_32

Theory : euclidean!plane!geometry


Home Index