Nuprl Lemma : straight-angles-not-lt

g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (a-b-c  x-y-z  abc < xyz))


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-lt-angle: abc < xyz and: P ∧ Q exists: x:A. B[x] geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-strict-between: a-b-c cand: c∧ B uiff: uiff(P;Q)
Lemmas referenced :  geo-lt-angle_wf geo-strict-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-congruent-preserves-strict-between geo-between-symmetry geo-strict-between-implies-between geo-between-inner-trans geo-between-exchange3 geo-between-exchange4 geo-between-outer-trans geo-sep-sym geo-between-sep geo-strict-between-sep2 geo-strict-between-sep3 geo-congruent-iff-length geo-length-flip
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination universeIsType introduction extract_by_obid dependent_functionElimination hypothesisEquality isectElimination applyEquality instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType productElimination independent_pairFormation equalityTransitivity equalitySymmetry

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (a-b-c  {}\mRightarrow{}  x-y-z  {}\mRightarrow{}  (\mneg{}abc  <  xyz))



Date html generated: 2019_10_16-PM-01_49_39
Last ObjectModification: 2019_09_27-PM-06_01_41

Theory : euclidean!plane!geometry


Home Index