Nuprl Lemma : straight-angles-not-lt
∀g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (a-b-c 
⇒ x-y-z 
⇒ (¬abc < xyz))
Proof
Definitions occuring in Statement : 
geo-lt-angle: abc < xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-strict-between: a-b-c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
geo-lt-angle: abc < xyz
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
geo-cong-angle: abc ≅a xyz
, 
basic-geometry: BasicGeometry
, 
geo-strict-between: a-b-c
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
Lemmas referenced : 
geo-lt-angle_wf, 
geo-strict-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-congruent-preserves-strict-between, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
geo-between-inner-trans, 
geo-between-exchange3, 
geo-between-exchange4, 
geo-between-outer-trans, 
geo-sep-sym, 
geo-between-sep, 
geo-strict-between-sep2, 
geo-strict-between-sep3, 
geo-congruent-iff-length, 
geo-length-flip
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
universeIsType, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
productElimination, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (a-b-c  {}\mRightarrow{}  x-y-z  {}\mRightarrow{}  (\mneg{}abc  <  xyz))
Date html generated:
2019_10_16-PM-01_49_39
Last ObjectModification:
2019_09_27-PM-06_01_41
Theory : euclidean!plane!geometry
Home
Index