Nuprl Lemma : proj-eq_functionality
∀[n:ℕ]. ∀[x1,x2,y1,y2:ℙ^n].  (uiff(x1 = y1;x2 = y2)) supposing (y1 = y2 and x1 = x2)
Proof
Definitions occuring in Statement : 
proj-eq: a = b
, 
real-proj: ℙ^n
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
guard: {T}
, 
proj-eq: a = b
, 
all: ∀x:A. B[x]
, 
real-proj: ℙ^n
, 
real-vec: ℝ^n
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
prop: ℙ
Lemmas referenced : 
proj-eq_inversion, 
proj-eq_transitivity, 
req_witness, 
rmul_wf, 
int_seg_wf, 
proj-eq_wf, 
real-proj_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
independent_functionElimination, 
natural_numberEquality, 
addEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x1,x2,y1,y2:\mBbbP{}\^{}n].    (uiff(x1  =  y1;x2  =  y2))  supposing  (y1  =  y2  and  x1  =  x2)
Date html generated:
2017_10_05-AM-00_18_43
Last ObjectModification:
2017_06_17-AM-10_08_15
Theory : inner!product!spaces
Home
Index