Nuprl Lemma : proj-eq_functionality

[n:ℕ]. ∀[x1,x2,y1,y2:ℙ^n].  (uiff(x1 y1;x2 y2)) supposing (y1 y2 and x1 x2)


Proof




Definitions occuring in Statement :  proj-eq: b real-proj: ^n nat: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q guard: {T} proj-eq: b all: x:A. B[x] real-proj: ^n real-vec: ^n implies:  Q nat: prop:
Lemmas referenced :  proj-eq_inversion proj-eq_transitivity req_witness rmul_wf int_seg_wf proj-eq_wf real-proj_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule lambdaEquality dependent_functionElimination applyEquality setElimination rename because_Cache independent_functionElimination natural_numberEquality addEquality productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x1,x2,y1,y2:\mBbbP{}\^{}n].    (uiff(x1  =  y1;x2  =  y2))  supposing  (y1  =  y2  and  x1  =  x2)



Date html generated: 2017_10_05-AM-00_18_43
Last ObjectModification: 2017_06_17-AM-10_08_15

Theory : inner!product!spaces


Home Index