Nuprl Lemma : proj-eq_inversion

[n:ℕ]. ∀[a,b:ℙ^n].  supposing b


Proof




Definitions occuring in Statement :  proj-eq: b real-proj: ^n nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  proj-eq: b uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: real-proj: ^n real-vec: ^n implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  int_seg_wf req_witness rmul_wf all_wf req_wf real-proj_wf nat_wf req_weakening req_functionality req_inversion
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename hypothesisEquality hypothesis lambdaEquality dependent_functionElimination applyEquality because_Cache independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination productElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbP{}\^{}n].    b  =  a  supposing  a  =  b



Date html generated: 2017_10_05-AM-00_18_30
Last ObjectModification: 2017_06_17-AM-10_07_44

Theory : inner!product!spaces


Home Index