Nuprl Lemma : stable__ip-congruent

[rv:InnerProductSpace]. ∀[a,b,c,d:Point(rv)].  Stable{ab=cd}


Proof




Definitions occuring in Statement :  ip-congruent: ab=cd inner-product-space: InnerProductSpace stable: Stable{P} uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ip-congruent: ab=cd subtype_rel: A ⊆B stable: Stable{P} uimplies: supposing a implies:  Q guard: {T}
Lemmas referenced :  stable_req rv-norm_wf rv-sub_wf req_witness inner-product-space_subtype Error :ss-point_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis sqequalRule lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry isect_memberEquality_alt independent_functionElimination isectIsTypeImplies universeIsType instantiate independent_isectElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d:Point(rv)].    Stable\{ab=cd\}



Date html generated: 2020_05_20-PM-01_13_12
Last ObjectModification: 2019_12_10-AM-00_47_23

Theory : inner!product!spaces


Home Index