Nuprl Lemma : trans-apply_wf
∀rv:InnerProductSpace. ∀T:ℝ ⟶ Point ⟶ Point. ∀x:Point.  ∀[t:ℝ]. (T_t(x) ∈ Point)
Proof
Definitions occuring in Statement : 
trans-apply: T_t(x)
, 
inner-product-space: InnerProductSpace
, 
real: ℝ
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
trans-apply: T_t(x)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
real_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
thin, 
instantiate, 
independent_isectElimination, 
functionEquality, 
because_Cache
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.  \mforall{}x:Point.    \mforall{}[t:\mBbbR{}].  (T\_t(x)  \mmember{}  Point)
Date html generated:
2017_10_05-AM-00_21_17
Last ObjectModification:
2017_06_24-PM-03_58_40
Theory : inner!product!spaces
Home
Index