Nuprl Lemma : trans-apply_wf

rv:InnerProductSpace. ∀T:ℝ ⟶ Point ⟶ Point. ∀x:Point.  ∀[t:ℝ]. (T_t(x) ∈ Point)


Proof




Definitions occuring in Statement :  trans-apply: T_t(x) inner-product-space: InnerProductSpace real: ss-point: Point uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T trans-apply: T_t(x) subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  real_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalRule applyEquality functionExtensionality hypothesisEquality extract_by_obid hypothesis sqequalHypSubstitution axiomEquality equalityTransitivity equalitySymmetry isectElimination thin instantiate independent_isectElimination functionEquality because_Cache

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.  \mforall{}x:Point.    \mforall{}[t:\mBbbR{}].  (T\_t(x)  \mmember{}  Point)



Date html generated: 2017_10_05-AM-00_21_17
Last ObjectModification: 2017_06_24-PM-03_58_40

Theory : inner!product!spaces


Home Index