Nuprl Lemma : max_w_unit_l_tree_wf
∀[T:Type]. ∀[u1,u2:T?]. ∀[f:T ⟶ ℤ].  (max_w_unit_l_tree(u1;u2;f) ∈ T?)
Proof
Definitions occuring in Statement : 
max_w_unit_l_tree: max_w_unit_l_tree(u1;u2;f)
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
max_w_unit_l_tree: max_w_unit_l_tree(u1;u2;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
max_w_ord_wf, 
unit_wf2, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
thin, 
because_Cache, 
lambdaFormation, 
unionElimination, 
inlEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
intEquality, 
isect_memberEquality, 
unionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[u1,u2:T?].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].    (max\_w\_unit\_l\_tree(u1;u2;f)  \mmember{}  T?)
Date html generated:
2019_10_31-AM-06_25_42
Last ObjectModification:
2018_08_21-PM-02_01_02
Theory : labeled!trees
Home
Index