Nuprl Lemma : max_w_ord_wf
∀[T:Type]. ∀[t1,t2:T]. ∀[f:T ⟶ ℤ].  (max_w_ord(t1;t2;f) ∈ T)
Proof
Definitions occuring in Statement : 
max_w_ord: max_w_ord(t1;t2;f), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
max_w_ord: max_w_ord(t1;t2;f), 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
guard: {T}, 
prop: ℙ
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
less_than_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
le_int_wf, 
le_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
axiomEquality, 
functionEquality, 
intEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t1,t2:T].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].    (max\_w\_ord(t1;t2;f)  \mmember{}  T)
Date html generated:
2018_05_22-PM-09_39_33
Last ObjectModification:
2017_03_04-PM-07_25_33
Theory : labeled!trees
Home
Index