Nuprl Lemma : is-dml-1_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(free-DeMorgan-lattice(T;eq))].  (is-dml-1(T;eq;x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  is-dml-1: is-dml-1(T;eq;x) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-point: Point(l) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-dml-1: is-dml-1(T;eq;x) subtype_rel: A ⊆B deq: EqDecider(T) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  free-dml-deq_wf deq_wf lattice-1_wf free-DeMorgan-lattice_wf bdd-distributive-lattice_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry cumulativity instantiate productEquality universeEquality independent_isectElimination isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:Point(free-DeMorgan-lattice(T;eq))].    (is-dml-1(T;eq;x)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_18-AM-11_44_17
Last ObjectModification: 2015_12_28-PM-01_56_48

Theory : lattices


Home Index