Nuprl Lemma : free-vs-subspace
∀[S:Type]. ∀[K:CRng]. ∀[P:formal-sum(K;S) ⟶ ℙ].
  ((P[{}]
  ∧ (∀fs,y:formal-sum(K;S).  (P[fs] 
⇒ P[y] 
⇒ P[fs + y]))
  ∧ (∀fs:formal-sum(K;S). ∀a:|K|.  (P[fs] 
⇒ P[a * fs])))
  
⇒ vs-subspace(K;free-vs(K;S);fs.P[fs]))
Proof
Definitions occuring in Statement : 
free-vs: free-vs(K;S)
, 
formal-sum-add: x + y
, 
formal-sum: formal-sum(K;S)
, 
formal-sum-mul: k * x
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
crng: CRng
, 
rng_car: |r|
, 
empty-bag: {}
Definitions unfolded in proof : 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
rng: Rng
, 
crng: CRng
, 
so_apply: x[s]
, 
prop: ℙ
, 
cand: A c∧ B
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
top: Top
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
vs-0: 0
, 
vs-add: x + y
, 
vs-point: Point(vs)
, 
vs-mul: a * x
, 
mk-vs: mk-vs, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
free-vs: free-vs(K;S)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
formal-sum: formal-sum(K;S)
, 
basic-formal-sum: basic-formal-sum(K;S)
Lemmas referenced : 
crng_wf, 
formal-sum-mul_wf, 
rng_car_wf, 
formal-sum-add_wf, 
all_wf, 
formal-sum_wf, 
rec_select_update_lemma, 
bfs-equiv-rel, 
bfs-equiv_wf, 
basic-formal-sum_wf, 
subtype_quotient, 
empty-bag_wf
Rules used in proof : 
universeEquality, 
functionEquality, 
lambdaEquality, 
cumulativity, 
because_Cache, 
rename, 
setElimination, 
isectElimination, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
productEquality, 
independent_pairFormation, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_isectElimination
Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].  \mforall{}[P:formal-sum(K;S)  {}\mrightarrow{}  \mBbbP{}].
    ((P[\{\}]
    \mwedge{}  (\mforall{}fs,y:formal-sum(K;S).    (P[fs]  {}\mRightarrow{}  P[y]  {}\mRightarrow{}  P[fs  +  y]))
    \mwedge{}  (\mforall{}fs:formal-sum(K;S).  \mforall{}a:|K|.    (P[fs]  {}\mRightarrow{}  P[a  *  fs])))
    {}\mRightarrow{}  vs-subspace(K;free-vs(K;S);fs.P[fs]))
Date html generated:
2018_05_22-PM-09_46_56
Last ObjectModification:
2018_01_09-PM-05_49_55
Theory : linear!algebra
Home
Index