Nuprl Lemma : free-vs-subspace

[S:Type]. ∀[K:CRng]. ∀[P:formal-sum(K;S) ⟶ ℙ].
  ((P[{}]
  ∧ (∀fs,y:formal-sum(K;S).  (P[fs]  P[y]  P[fs y]))
  ∧ (∀fs:formal-sum(K;S). ∀a:|K|.  (P[fs]  P[a fs])))
   vs-subspace(K;free-vs(K;S);fs.P[fs]))


Proof




Definitions occuring in Statement :  free-vs: free-vs(K;S) formal-sum-add: y formal-sum: formal-sum(K;S) formal-sum-mul: x vs-subspace: vs-subspace(K;vs;x.P[x]) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type crng: CRng rng_car: |r| empty-bag: {}
Definitions unfolded in proof :  so_lambda: λ2x.t[x] subtype_rel: A ⊆B rng: Rng crng: CRng so_apply: x[s] prop: cand: c∧ B btrue: tt bfalse: ff ifthenelse: if then else fi  eq_atom: =a y top: Top member: t ∈ T all: x:A. B[x] vs-0: 0 vs-add: y vs-point: Point(vs) vs-mul: x mk-vs: mk-vs vs-subspace: vs-subspace(K;vs;x.P[x]) free-vs: free-vs(K;S) and: P ∧ Q implies:  Q uall: [x:A]. B[x] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] formal-sum: formal-sum(K;S) basic-formal-sum: basic-formal-sum(K;S)
Lemmas referenced :  crng_wf formal-sum-mul_wf rng_car_wf formal-sum-add_wf all_wf formal-sum_wf rec_select_update_lemma bfs-equiv-rel bfs-equiv_wf basic-formal-sum_wf subtype_quotient empty-bag_wf
Rules used in proof :  universeEquality functionEquality lambdaEquality cumulativity because_Cache rename setElimination isectElimination hypothesisEquality functionExtensionality applyEquality productEquality independent_pairFormation hypothesis voidEquality voidElimination isect_memberEquality dependent_functionElimination extract_by_obid introduction cut sqequalRule thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_isectElimination

Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].  \mforall{}[P:formal-sum(K;S)  {}\mrightarrow{}  \mBbbP{}].
    ((P[\{\}]
    \mwedge{}  (\mforall{}fs,y:formal-sum(K;S).    (P[fs]  {}\mRightarrow{}  P[y]  {}\mRightarrow{}  P[fs  +  y]))
    \mwedge{}  (\mforall{}fs:formal-sum(K;S).  \mforall{}a:|K|.    (P[fs]  {}\mRightarrow{}  P[a  *  fs])))
    {}\mRightarrow{}  vs-subspace(K;free-vs(K;S);fs.P[fs]))



Date html generated: 2018_05_22-PM-09_46_56
Last ObjectModification: 2018_01_09-PM-05_49_55

Theory : linear!algebra


Home Index