Nuprl Lemma : is-short-exact_wf

[K:Rng]. ∀[A,B,C:VectorSpace(K)]. ∀[f:A ⟶ B]. ∀[g:B ⟶ C].  (is-short-exact(A;B;C;f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  is-short-exact: is-short-exact(A;B;C;f;g) vs-map: A ⟶ B vector-space: VectorSpace(K) uall: [x:A]. B[x] prop: member: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-short-exact: is-short-exact(A;B;C;f;g) prop: and: P ∧ Q all: x:A. B[x] rng: Rng vs-map: A ⟶ B iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  vs-point_wf iff_wf vs-map-kernel_wf equal_wf vs-0_wf vs-map-image_wf vs-map_wf vector-space_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_functionElimination

Latex:
\mforall{}[K:Rng].  \mforall{}[A,B,C:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  C].    (is-short-exact(A;B;C;f;g)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_31-AM-06_27_40
Last ObjectModification: 2019_08_21-PM-06_33_04

Theory : linear!algebra


Home Index