Nuprl Lemma : is-short-exact_wf
∀[K:Rng]. ∀[A,B,C:VectorSpace(K)]. ∀[f:A ⟶ B]. ∀[g:B ⟶ C].  (is-short-exact(A;B;C;f;g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
is-short-exact: is-short-exact(A;B;C;f;g)
, 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is-short-exact: is-short-exact(A;B;C;f;g)
, 
prop: ℙ
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
rng: Rng
, 
vs-map: A ⟶ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
vs-point_wf, 
iff_wf, 
vs-map-kernel_wf, 
equal_wf, 
vs-0_wf, 
vs-map-image_wf, 
vs-map_wf, 
vector-space_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_functionElimination
Latex:
\mforall{}[K:Rng].  \mforall{}[A,B,C:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  C].    (is-short-exact(A;B;C;f;g)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_31-AM-06_27_40
Last ObjectModification:
2019_08_21-PM-06_33_04
Theory : linear!algebra
Home
Index