Nuprl Lemma : sum-in-vs_wf

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[n,m:ℤ]. ∀[f:{n..m 1-} ⟶ Point(vs)].  {f[i] n≤i≤m} ∈ Point(vs))


Proof




Definitions occuring in Statement :  sum-in-vs: Σ{f[i] n≤i≤m} vector-space: VectorSpace(K) vs-point: Point(vs) int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n int: rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B and: P ∧ Q prop: uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k sum-in-vs: Σ{f[i] n≤i≤m} rng: Rng all: x:A. B[x]
Lemmas referenced :  vs-bag-add_wf int_seg_wf from-upto_wf list-subtype-bag le_wf less_than_wf istype-le istype-less_than vs-point_wf istype-int vector-space_wf rng_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality addEquality natural_numberEquality applyEquality setEquality intEquality productEquality independent_isectElimination lambdaEquality_alt sqequalRule setIsType inhabitedIsType productIsType because_Cache equalityTransitivity equalitySymmetry functionIsType universeIsType setElimination rename dependent_functionElimination

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[n,m:\mBbbZ{}].  \mforall{}[f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  Point(vs)].
    (\mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}  \mmember{}  Point(vs))



Date html generated: 2019_10_31-AM-06_26_00
Last ObjectModification: 2019_08_08-AM-11_57_38

Theory : linear!algebra


Home Index