Nuprl Lemma : sum-in-vs_wf
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[n,m:ℤ]. ∀[f:{n..m + 1-} ⟶ Point(vs)].  (Σ{f[i] | n≤i≤m} ∈ Point(vs))
Proof
Definitions occuring in Statement : 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
rng: Rng
, 
all: ∀x:A. B[x]
Lemmas referenced : 
vs-bag-add_wf, 
int_seg_wf, 
from-upto_wf, 
list-subtype-bag, 
le_wf, 
less_than_wf, 
istype-le, 
istype-less_than, 
vs-point_wf, 
istype-int, 
vector-space_wf, 
rng_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
addEquality, 
natural_numberEquality, 
applyEquality, 
setEquality, 
intEquality, 
productEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
sqequalRule, 
setIsType, 
inhabitedIsType, 
productIsType, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
setElimination, 
rename, 
dependent_functionElimination
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[n,m:\mBbbZ{}].  \mforall{}[f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  Point(vs)].
    (\mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}  \mmember{}  Point(vs))
Date html generated:
2019_10_31-AM-06_26_00
Last ObjectModification:
2019_08_08-AM-11_57_38
Theory : linear!algebra
Home
Index