Nuprl Lemma : vs-grp_inverse

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[x:Point(vs)].  ((x -(x) 0 ∈ Point(vs)) ∧ (-(x) 0 ∈ Point(vs)))


Proof




Definitions occuring in Statement :  vs-neg: -(x) vs-add: y vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True rng: Rng prop: squash: T cand: c∧ B and: P ∧ Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf vector-space_wf vs-neg_wf vs-add-comm iff_weakening_equal vs-0_wf vs-add-neg vs-point_wf true_wf squash_wf equal_wf
Rules used in proof :  dependent_functionElimination isect_memberEquality axiomEquality independent_pairEquality independent_pairFormation independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality sqequalRule natural_numberEquality because_Cache rename setElimination universeEquality equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x:Point(vs)].    ((x  +  -(x)  =  0)  \mwedge{}  (-(x)  +  x  =  0))



Date html generated: 2018_05_22-PM-09_41_08
Last ObjectModification: 2018_01_09-AM-10_32_55

Theory : linear!algebra


Home Index