Nuprl Lemma : ps_contexts_equal

[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)].
  Y ∈ ps_context{j:l}(C) 
  supposing Y ∈ (F:cat-ob(C) ⟶ 𝕌{j'} × (x:cat-ob(C) ⟶ y:cat-ob(C) ⟶ (cat-arrow(C) x) ⟶ (F x) ⟶ (F y)))


Proof




Definitions occuring in Statement :  ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B ps_context: __⊢ cat-functor: Functor(C1;C2) small-category: SmallCategory spreadn: spread4 all: x:A. B[x] type-cat: TypeCat op-cat: op-cat(C) so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t) pi2: snd(t) and: P ∧ Q squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal-functors op-cat_wf type-cat_wf small-category-cumulativity-2 cat_ob_pair_lemma cat_arrow_triple_lemma ob_pair_lemma cat_id_tuple_lemma cat_comp_tuple_lemma pi2_wf pi1_wf_top arrow_pair_lemma equal_wf squash_wf true_wf istype-universe subtype_rel_dep_function subtype_rel-equal subtype_rel_self iff_weakening_equal ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache sqequalRule independent_isectElimination setElimination rename productElimination dependent_functionElimination Error :memTop,  applyLambdaEquality functionEquality cumulativity universeEquality lambdaEquality_alt inhabitedIsType independent_pairEquality lambdaFormation_alt equalitySymmetry dependent_set_memberEquality_alt independent_pairFormation equalityTransitivity productIsType equalityIstype universeIsType imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination functionIsType dependent_pairEquality_alt

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y:ps\_context\{j:l\}(C)].    X  =  Y  supposing  X  =  Y



Date html generated: 2020_05_20-PM-01_23_08
Last ObjectModification: 2020_04_02-PM-01_41_36

Theory : presheaf!models!of!type!theory


Home Index