Nuprl Lemma : small_ps_context_subtype
∀[C:SmallCategory]. (small_ps_context{j:l}(C) ⊆r ps_context{j:l}(C))
Proof
Definitions occuring in Statement : 
small_ps_context: small_ps_context{i:l}(C)
, 
ps_context: __⊢
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
small_ps_context: small_ps_context{i:l}(C)
, 
cat-functor: Functor(C1;C2)
, 
ps_context: __⊢
, 
type-cat: TypeCat
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Lemmas referenced : 
cat_arrow_triple_lemma, 
cat_id_tuple_lemma, 
cat_comp_tuple_lemma, 
cat_ob_pair_lemma, 
cat-ob_wf, 
op-cat_wf, 
cat-arrow_wf, 
type-cat_wf, 
cat-id_wf, 
cat-comp_wf, 
small_ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
productElimination, 
dependent_pairEquality_alt, 
functionExtensionality, 
cumulativity, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
universeIsType, 
functionEquality, 
because_Cache, 
universeEquality, 
productIsType, 
functionIsType, 
equalityIstype, 
instantiate, 
axiomEquality
Latex:
\mforall{}[C:SmallCategory].  (small\_ps\_context\{j:l\}(C)  \msubseteq{}r  ps\_context\{j:l\}(C))
Date html generated:
2020_05_20-PM-01_23_02
Last ObjectModification:
2020_04_01-AM-10_42_41
Theory : presheaf!models!of!type!theory
Home
Index