Nuprl Lemma : cube-face_wf
∀[k:ℕ]. ∀[i:ℕk]. ∀[up:𝔹]. ∀[c:real-cube(k)].  (cube-face(i;up;c) ∈ real-cube(k))
Proof
Definitions occuring in Statement : 
cube-face: cube-face(i;up;c)
, 
real-cube: real-cube(k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-cube: real-cube(k)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
cube-face: cube-face(i;up;c)
, 
ifthenelse: if b then t else f fi 
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
bfalse: ff
, 
nat: ℕ
Lemmas referenced : 
ifthenelse_wf, 
eq_int_wf, 
real_wf, 
real-cube_wf, 
bool_wf, 
int_seg_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
equalityElimination, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality_alt, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
inhabitedIsType, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
natural_numberEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[i:\mBbbN{}k].  \mforall{}[up:\mBbbB{}].  \mforall{}[c:real-cube(k)].    (cube-face(i;up;c)  \mmember{}  real-cube(k))
Date html generated:
2019_10_30-AM-11_32_01
Last ObjectModification:
2019_09_27-PM-01_49_52
Theory : real!vectors
Home
Index