Nuprl Lemma : incr-binary-seq_wf
IBS ∈ Type
Proof
Definitions occuring in Statement :
incr-binary-seq: IBS
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
prop: ℙ
,
and: P ∧ Q
,
top: Top
,
false: False
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
implies: P
⇒ Q
,
not: ¬A
,
uimplies: b supposing a
,
or: P ∨ Q
,
decidable: Dec(P)
,
ge: i ≥ j
,
nat: ℕ
,
int_seg: {i..j-}
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
incr-binary-seq: IBS
Lemmas referenced :
istype-le,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_and_lemma,
istype-int,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
full-omega-unsat,
decidable__le,
nat_properties,
le_wf,
int_seg_wf,
nat_wf
Rules used in proof :
because_Cache,
independent_pairFormation,
voidElimination,
isect_memberEquality_alt,
int_eqEquality,
dependent_pairFormation_alt,
independent_functionElimination,
approximateComputation,
independent_isectElimination,
unionElimination,
dependent_functionElimination,
addEquality,
dependent_set_memberEquality_alt,
universeIsType,
rename,
setElimination,
lambdaEquality_alt,
hypothesisEquality,
applyEquality,
natural_numberEquality,
thin,
isectElimination,
sqequalHypSubstitution,
hypothesis,
extract_by_obid,
introduction,
cut,
functionEquality,
setEquality,
computationStep,
sqequalTransitivity,
sqequalReflexivity,
sqequalRule,
sqequalSubstitution
Latex:
IBS \mmember{} Type
Date html generated:
2019_10_30-AM-10_15_40
Last ObjectModification:
2019_06_28-PM-02_19_44
Theory : real!vectors
Home
Index