Nuprl Lemma : incr-binary-seq_wf

IBS ∈ Type


Proof




Definitions occuring in Statement :  incr-binary-seq: IBS member: t ∈ T universe: Type
Definitions unfolded in proof :  prop: and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: int_seg: {i..j-} subtype_rel: A ⊆B all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T incr-binary-seq: IBS
Lemmas referenced :  istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties le_wf int_seg_wf nat_wf
Rules used in proof :  because_Cache independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination addEquality dependent_set_memberEquality_alt universeIsType rename setElimination lambdaEquality_alt hypothesisEquality applyEquality natural_numberEquality thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid introduction cut functionEquality setEquality computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
IBS  \mmember{}  Type



Date html generated: 2019_10_30-AM-10_15_40
Last ObjectModification: 2019_06_28-PM-02_19_44

Theory : real!vectors


Home Index