Nuprl Lemma : Vesley-subset-connected

VesleyAxiom
 (∀P:ℝ ⟶ ℙ
      ((∀x:ℝ. ∀y:{y:ℝy} .  (P[y]  P[x]))  dense-in-interval((-∞, ∞);λx.(¬P[x]))  Connected({x:ℝ| ¬P[x]} )))


Proof




Definitions occuring in Statement :  VesleyAxiom: VesleyAxiom connected: Connected(X) dense-in-interval: dense-in-interval(I;X) riiint: (-∞, ∞) req: y real: prop: so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] not: ¬A prop: so_lambda: λ2x.t[x] VesleyAxiom: VesleyAxiom exists: x:A. B[x] guard: {T} uimplies: supposing a false: False
Lemmas referenced :  real-subset-connected not_wf real_wf sq_stable__not set_wf req_wf bool_wf dense-in-interval_wf riiint_wf i-member_wf all_wf VesleyAxiom_wf req_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin lambdaEquality isectElimination applyEquality functionExtensionality hypothesisEquality hypothesis independent_functionElimination sqequalRule because_Cache setElimination rename functionEquality setEquality cumulativity universeEquality dependent_set_memberEquality independent_isectElimination voidElimination

Latex:
VesleyAxiom
{}\mRightarrow{}  (\mforall{}P:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}
            ((\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  x  =  y\}  .    (P[y]  {}\mRightarrow{}  P[x]))
            {}\mRightarrow{}  dense-in-interval((-\minfty{},  \minfty{});\mlambda{}x.(\mneg{}P[x]))
            {}\mRightarrow{}  Connected(\{x:\mBbbR{}|  \mneg{}P[x]\}  )))



Date html generated: 2017_10_03-AM-10_15_30
Last ObjectModification: 2017_09_13-PM-04_02_11

Theory : reals


Home Index