Nuprl Lemma : Vesley-subset-connected
VesleyAxiom
⇒ (∀P:ℝ ⟶ ℙ
      ((∀x:ℝ. ∀y:{y:ℝ| x = y} .  (P[y] 
⇒ P[x])) 
⇒ dense-in-interval((-∞, ∞);λx.(¬P[x])) 
⇒ Connected({x:ℝ| ¬P[x]} )))
Proof
Definitions occuring in Statement : 
VesleyAxiom: VesleyAxiom
, 
connected: Connected(X)
, 
dense-in-interval: dense-in-interval(I;X)
, 
riiint: (-∞, ∞)
, 
req: x = y
, 
real: ℝ
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
not: ¬A
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
VesleyAxiom: VesleyAxiom
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
false: False
Lemmas referenced : 
real-subset-connected, 
not_wf, 
real_wf, 
sq_stable__not, 
set_wf, 
req_wf, 
bool_wf, 
dense-in-interval_wf, 
riiint_wf, 
i-member_wf, 
all_wf, 
VesleyAxiom_wf, 
req_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lambdaEquality, 
isectElimination, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
because_Cache, 
setElimination, 
rename, 
functionEquality, 
setEquality, 
cumulativity, 
universeEquality, 
dependent_set_memberEquality, 
independent_isectElimination, 
voidElimination
Latex:
VesleyAxiom
{}\mRightarrow{}  (\mforall{}P:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}
            ((\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  x  =  y\}  .    (P[y]  {}\mRightarrow{}  P[x]))
            {}\mRightarrow{}  dense-in-interval((-\minfty{},  \minfty{});\mlambda{}x.(\mneg{}P[x]))
            {}\mRightarrow{}  Connected(\{x:\mBbbR{}|  \mneg{}P[x]\}  )))
Date html generated:
2017_10_03-AM-10_15_30
Last ObjectModification:
2017_09_13-PM-04_02_11
Theory : reals
Home
Index