Nuprl Lemma : VesleySchema_wf

VesleySchema ∈ ℙ'


Proof




Definitions occuring in Statement :  VesleySchema: VesleySchema prop: member: t ∈ T
Definitions unfolded in proof :  VesleySchema: VesleySchema member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] implies:  Q all: x:A. B[x] nat_plus: + so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  all_wf nat_plus_wf exists_wf not_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat_plus false_wf subtype_rel_self bool_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality intEquality because_Cache setEquality functionExtensionality lambdaFormation setElimination rename natural_numberEquality independent_isectElimination independent_pairFormation dependent_set_memberEquality

Latex:
VesleySchema  \mmember{}  \mBbbP{}'



Date html generated: 2017_10_03-AM-10_14_17
Last ObjectModification: 2017_09_19-PM-00_47_38

Theory : reals


Home Index