Nuprl Lemma : VesleySchema_wf
VesleySchema ∈ ℙ'
Proof
Definitions occuring in Statement : 
VesleySchema: VesleySchema, 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
VesleySchema: VesleySchema, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
nat_plus: ℕ+, 
so_apply: x[s], 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A
Lemmas referenced : 
all_wf, 
nat_plus_wf, 
exists_wf, 
not_wf, 
equal_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat_plus, 
false_wf, 
subtype_rel_self, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
intEquality, 
because_Cache, 
setEquality, 
functionExtensionality, 
lambdaFormation, 
setElimination, 
rename, 
natural_numberEquality, 
independent_isectElimination, 
independent_pairFormation, 
dependent_set_memberEquality
Latex:
VesleySchema  \mmember{}  \mBbbP{}'
 Date html generated: 
2017_10_03-AM-10_14_17
 Last ObjectModification: 
2017_09_19-PM-00_47_38
Theory : reals
Home
Index