Nuprl Lemma : alt-Riemann-sums-converge-ext
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b].  Riemann-sum-alt(f;a;b;k + 1)↓ as k→∞
Proof
Definitions occuring in Statement : 
Riemann-sum-alt: Riemann-sum-alt(f;a;b;k)
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
converges: x[n]↓ as n→∞
, 
rleq: x ≤ y
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
sq_stable__rless, 
sq_stable__and, 
rless-cases, 
integer-bound, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
squash: ↓T
, 
or: P ∨ Q
, 
guard: {T}
, 
prop: ℙ
, 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
strict4: strict4(F)
, 
uimplies: b supposing a
, 
top: Top
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
uall: ∀[x:A]. B[x]
, 
Riemann-sums-cauchy, 
alt-Riemann-sums-cauchy, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
converges-iff-cauchy, 
alt-Riemann-sums-converge, 
member: t ∈ T
Lemmas referenced : 
sq_stable__rless, 
sq_stable__and, 
rless-cases, 
integer-bound, 
Riemann-sums-cauchy, 
alt-Riemann-sums-cauchy, 
converges-iff-cauchy, 
alt-Riemann-sums-converge
Rules used in proof : 
inlFormation, 
imageElimination, 
imageMemberEquality, 
intEquality, 
inrFormation, 
exceptionSqequal, 
addExceptionCases, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
productElimination, 
hypothesisEquality, 
closedConclusion, 
baseApply, 
callbyvalueAdd, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].
    Riemann-sum-alt(f;a;b;k  +  1)\mdownarrow{}  as  k\mrightarrow{}\minfty{}
Date html generated:
2016_07_08-PM-06_00_05
Last ObjectModification:
2016_07_05-PM-03_14_51
Theory : reals
Home
Index