Nuprl Lemma : alt-Riemann-sums-cauchy
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b].  cauchy(k.Riemann-sum-alt(f;a;b;k + 1))
Proof
Definitions occuring in Statement : 
Riemann-sum-alt: Riemann-sum-alt(f;a;b;k)
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
cauchy: cauchy(n.x[n])
, 
rleq: x ≤ y
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
rfun: I ⟶ℝ
, 
label: ...$L... t
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
guard: {T}
, 
rneq: x ≠ y
, 
true: True
, 
less_than': less_than'(a;b)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_exists: ∃x:{A| B[x]}
, 
cauchy: cauchy(n.x[n])
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
, 
rccint: [l, u]
, 
i-member: r ∈ I
Lemmas referenced : 
and_wf, 
continuous-implies-functional, 
member_rccint_lemma, 
req_inversion, 
req_weakening, 
Riemann-sum-alt-req, 
rsub_functionality, 
rabs_functionality, 
rleq_functionality, 
Riemann-sums-cauchy, 
le_wf, 
nat_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
Riemann-sum-alt_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
nat_plus_wf, 
continuous_wf, 
rccint_wf, 
subtype_rel_self, 
rfun_wf, 
real_wf, 
i-member_wf, 
Riemann-sum_wf, 
req_wf
Rules used in proof : 
setEquality, 
computeAll, 
int_eqEquality, 
dependent_pairFormation, 
inrFormation, 
minusEquality, 
intEquality, 
voidEquality, 
isect_memberEquality, 
applyEquality, 
independent_isectElimination, 
voidElimination, 
independent_pairFormation, 
unionElimination, 
productElimination, 
natural_numberEquality, 
addEquality, 
functionEquality, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
introduction, 
rename, 
setElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lemma_by_obid, 
cut, 
addLevel, 
levelHypothesis, 
promote_hyp, 
andLevelFunctionality
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].
    cauchy(k.Riemann-sum-alt(f;a;b;k  +  1))
Date html generated:
2016_05_18-AM-10_45_55
Last ObjectModification:
2016_01_17-AM-00_22_33
Theory : reals
Home
Index