Nuprl Lemma : alt-Riemann-sums-cauchy

a:ℝ. ∀b:{b:ℝa ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b].  cauchy(k.Riemann-sum-alt(f;a;b;k 1))


Proof




Definitions occuring in Statement :  Riemann-sum-alt: Riemann-sum-alt(f;a;b;k) continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ rccint: [l, u] cauchy: cauchy(n.x[n]) rleq: x ≤ y real: so_apply: x[s] all: x:A. B[x] set: {x:A| B[x]}  add: m natural_number: $n
Definitions unfolded in proof :  rfun: I ⟶ℝ label: ...$L... t so_apply: x[s] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  guard: {T} rneq: x ≠ y true: True less_than': less_than'(a;b) top: Top subtype_rel: A ⊆B subtract: m uimplies: supposing a uiff: uiff(P;Q) false: False rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) and: P ∧ Q le: A ≤ B nat_plus: + so_lambda: λ2x.t[x] nat: uall: [x:A]. B[x] prop: implies:  Q sq_exists: x:{A| B[x]} cauchy: cauchy(n.x[n]) member: t ∈ T all: x:A. B[x] rev_uimplies: rev_uimplies(P;Q) cand: c∧ B rccint: [l, u] i-member: r ∈ I
Lemmas referenced :  and_wf continuous-implies-functional member_rccint_lemma req_inversion req_weakening Riemann-sum-alt-req rsub_functionality rabs_functionality rleq_functionality Riemann-sums-cauchy le_wf nat_wf all_wf rleq_wf rabs_wf rsub_wf Riemann-sum-alt_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf rdiv_wf int-to-real_wf rless-int nat_properties nat_plus_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf nat_plus_wf continuous_wf rccint_wf subtype_rel_self rfun_wf real_wf i-member_wf Riemann-sum_wf req_wf
Rules used in proof :  setEquality computeAll int_eqEquality dependent_pairFormation inrFormation minusEquality intEquality voidEquality isect_memberEquality applyEquality independent_isectElimination voidElimination independent_pairFormation unionElimination productElimination natural_numberEquality addEquality functionEquality because_Cache lambdaEquality sqequalRule isectElimination independent_functionElimination dependent_set_memberEquality introduction rename setElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lemma_by_obid cut addLevel levelHypothesis promote_hyp andLevelFunctionality

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].
    cauchy(k.Riemann-sum-alt(f;a;b;k  +  1))



Date html generated: 2016_05_18-AM-10_45_55
Last ObjectModification: 2016_01_17-AM-00_22_33

Theory : reals


Home Index