Nuprl Lemma : Riemann-sum-alt_wf

[a:ℝ]. ∀[b:{b:ℝa ≤ b} ]. ∀[f:[a, b] ⟶ℝ]. ∀[k:ℕ+].  (Riemann-sum-alt(f;a;b;k) ∈ ℝ)


Proof




Definitions occuring in Statement :  Riemann-sum-alt: Riemann-sum-alt(f;a;b;k) rfun: I ⟶ℝ rccint: [l, u] rleq: x ≤ y real: nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  prop: top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) rev_implies:  Q or: P ∨ Q guard: {T} rneq: x ≠ y squash: T exists: x:A. B[x] real: so_apply: x[s] so_lambda: λ2x.t[x] nat_plus: + uimplies: supposing a has-value: (a)↓ implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] Riemann-sum-alt: Riemann-sum-alt(f;a;b;k) member: t ∈ T uall: [x:A]. B[x] rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) lelt: i ≤ j < k int_seg: {i..j-} cand: c∧ B rfun: I ⟶ℝ subtype_rel: A ⊆B le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y rge: x ≥ y subtract: m
Lemmas referenced :  itermSubtract_wf int_term_value_subtract_lemma zero-add zero-mul add-mul-special add-commutes add-swap minus-one-mul add-associates radd-int rmul_functionality rmul-distrib req_inversion req_transitivity radd_functionality_wrt_rleq rleq_weakening_equal rleq_functionality_wrt_implies radd_functionality rmul_preserves_rleq2 rleq-int decidable__le less_than'_wf rmul_comm rmul-rdiv-cancel2 req_weakening rleq_functionality uiff_transitivity rmul_wf rsum'_wf subtract_wf member_rccint_lemma rmul_preserves_rleq subtract-add-cancel int_seg_properties intformle_wf int_formula_prop_le_lemma and_wf int_seg_wf radd_wf rccint-icompact value-type-has-value nat_plus_wf set-value-type less_than_wf int-value-type real_wf regular-int-seq_wf function-value-type rdiv_wf rsub_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rfun_wf rccint_wf set_wf rleq_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality computeAll voidEquality voidElimination isect_memberEquality int_eqEquality dependent_pairFormation unionElimination inrFormation baseClosed imageMemberEquality independent_pairFormation because_Cache functionEquality natural_numberEquality lambdaEquality intEquality independent_isectElimination isectElimination callbyvalueReduce sqequalRule hypothesis independent_functionElimination productElimination hypothesisEquality dependent_functionElimination sqequalHypSubstitution lemma_by_obid rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution addEquality dependent_set_memberEquality applyEquality minusEquality independent_pairEquality multiplyEquality

Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (Riemann-sum-alt(f;a;b;k)  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-10_44_38
Last ObjectModification: 2016_01_17-AM-00_21_30

Theory : reals


Home Index