Nuprl Lemma : Riemann-sum-alt_wf
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[f:[a, b] ⟶ℝ]. ∀[k:ℕ+].  (Riemann-sum-alt(f;a;b;k) ∈ ℝ)
Proof
Definitions occuring in Statement : 
Riemann-sum-alt: Riemann-sum-alt(f;a;b;k)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
rleq: x ≤ y
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
prop: ℙ
, 
top: Top
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
real: ℝ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
Riemann-sum-alt: Riemann-sum-alt(f;a;b;k)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
cand: A c∧ B
, 
rfun: I ⟶ℝ
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
rge: x ≥ y
, 
subtract: n - m
Lemmas referenced : 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
zero-add, 
zero-mul, 
add-mul-special, 
add-commutes, 
add-swap, 
minus-one-mul, 
add-associates, 
radd-int, 
rmul_functionality, 
rmul-distrib, 
req_inversion, 
req_transitivity, 
radd_functionality_wrt_rleq, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
radd_functionality, 
rmul_preserves_rleq2, 
rleq-int, 
decidable__le, 
less_than'_wf, 
rmul_comm, 
rmul-rdiv-cancel2, 
req_weakening, 
rleq_functionality, 
uiff_transitivity, 
rmul_wf, 
rsum'_wf, 
subtract_wf, 
member_rccint_lemma, 
rmul_preserves_rleq, 
subtract-add-cancel, 
int_seg_properties, 
intformle_wf, 
int_formula_prop_le_lemma, 
and_wf, 
int_seg_wf, 
radd_wf, 
rccint-icompact, 
value-type-has-value, 
nat_plus_wf, 
set-value-type, 
less_than_wf, 
int-value-type, 
real_wf, 
regular-int-seq_wf, 
function-value-type, 
rdiv_wf, 
rsub_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
rfun_wf, 
rccint_wf, 
set_wf, 
rleq_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
inrFormation, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
because_Cache, 
functionEquality, 
natural_numberEquality, 
lambdaEquality, 
intEquality, 
independent_isectElimination, 
isectElimination, 
callbyvalueReduce, 
sqequalRule, 
hypothesis, 
independent_functionElimination, 
productElimination, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
rename, 
thin, 
setElimination, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
addEquality, 
dependent_set_memberEquality, 
applyEquality, 
minusEquality, 
independent_pairEquality, 
multiplyEquality
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (Riemann-sum-alt(f;a;b;k)  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-10_44_38
Last ObjectModification:
2016_01_17-AM-00_21_30
Theory : reals
Home
Index