Nuprl Lemma : Riemann-sum-alt-req
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[f:[a, b] ⟶ℝ].
  ((∀x,y:ℝ.  ((x ∈ [a, b]) 
⇒ (x = y) 
⇒ ((f y) = (f x))))
  
⇒ (∀[k:ℕ+]. (Riemann-sum-alt(f;a;b;k) = Riemann-sum(f;a;b;k))))
Proof
Definitions occuring in Statement : 
Riemann-sum-alt: Riemann-sum-alt(f;a;b;k)
, 
Riemann-sum: Riemann-sum(f;a;b;k)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
req: x = y
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
Definitions unfolded in proof : 
cand: A c∧ B
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
top: Top
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
real: ℝ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
Riemann-sum-alt: Riemann-sum-alt(f;a;b;k)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
prop: ℙ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
rfun: I ⟶ℝ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
rge: x ≥ y
, 
subtract: n - m
, 
less_than: a < b
, 
partition-sum: partition-sum(f;x;p)
, 
default-partition-choice: default-partition-choice(p)
, 
has-valueall: has-valueall(a)
, 
callbyvalueall: callbyvalueall, 
Riemann-sum: Riemann-sum(f;a;b;k)
, 
sq_type: SQType(T)
, 
nat: ℕ
, 
full-partition: full-partition(I;p)
, 
uniform-partition: uniform-partition(I;k)
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
cons: [a / b]
, 
select: L[n]
, 
true: True
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
rsub: x - y
Lemmas referenced : 
rmul-distrib2, 
rmul-identity1, 
rminus-as-rmul, 
radd-ac, 
radd-assoc, 
rminus-radd, 
rmul-one-both, 
rminus_functionality, 
rminus_wf, 
rsub-rdiv, 
rsub_functionality, 
add-member-int_seg2, 
set_subtype_base, 
minus-minus, 
minus-add, 
rsub-int, 
rdiv_functionality, 
select-append, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
mklist_select, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
squash_wf, 
true_wf, 
select_cons_tl, 
append_wf, 
mklist_wf, 
cons_wf, 
nil_wf, 
length_append, 
subtype_rel_list, 
top_wf, 
iff_weakening_equal, 
length-singleton, 
minus-zero, 
add-zero, 
radd-zero-both, 
radd_comm, 
rmul-zero-both, 
rmul_preserves_req, 
list-set-type2, 
select_wf, 
rsum_functionality, 
full-partition-point-member, 
length_of_cons_lemma, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
length-append, 
mklist_length, 
le_wf, 
length_of_nil_lemma, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
valueall-type-has-valueall, 
list_wf, 
list-valueall-type, 
real-valueall-type, 
full-partition_wf, 
uniform-partition_wf, 
evalall-reduce, 
valueall-type-real-list, 
rsum_linearity2, 
rsum'-rsum, 
req_functionality, 
rsum'_wf, 
subtract-add-cancel, 
lelt_wf, 
rsum_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
zero-add, 
zero-mul, 
add-mul-special, 
add-commutes, 
add-swap, 
minus-one-mul, 
add-associates, 
radd-int, 
rmul_functionality, 
rmul-distrib, 
req_transitivity, 
radd_functionality_wrt_rleq, 
rleq_functionality_wrt_implies, 
radd_functionality, 
rmul_preserves_rleq2, 
rleq-int, 
decidable__le, 
less_than'_wf, 
rleq_weakening_equal, 
rmul_comm, 
rmul-rdiv-cancel2, 
req_weakening, 
rleq_functionality, 
uiff_transitivity, 
rmul_preserves_rleq, 
int_seg_properties, 
intformle_wf, 
int_formula_prop_le_lemma, 
int_seg_wf, 
rmul_wf, 
radd_wf, 
subtract_wf, 
set_wf, 
rfun_wf, 
member_rccint_lemma, 
req_wf, 
rccint_wf, 
i-member_wf, 
all_wf, 
req_witness, 
sq_stable__req, 
Riemann-sum-alt_wf, 
rleq_wf, 
Riemann-sum_wf, 
rccint-icompact, 
value-type-has-value, 
nat_plus_wf, 
set-value-type, 
less_than_wf, 
int-value-type, 
real_wf, 
regular-int-seq_wf, 
function-value-type, 
rdiv_wf, 
rsub_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
rleq_transitivity, 
rleq_weakening, 
req_inversion, 
and_wf
Rules used in proof : 
imageElimination, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
inrFormation, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
functionEquality, 
natural_numberEquality, 
lambdaEquality, 
intEquality, 
independent_isectElimination, 
callbyvalueReduce, 
sqequalRule, 
productElimination, 
dependent_functionElimination, 
introduction, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
dependent_set_memberEquality, 
hypothesisEquality, 
isectElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
rename, 
thin, 
setElimination, 
isect_memberFormation, 
lambdaFormation, 
applyEquality, 
multiplyEquality, 
addEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
minusEquality, 
independent_pairEquality, 
instantiate, 
setEquality, 
cumulativity, 
universeEquality, 
equalityEquality, 
promote_hyp, 
equalityElimination
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].
    ((\mforall{}x,y:\mBbbR{}.    ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  ((f  y)  =  (f  x))))
    {}\mRightarrow{}  (\mforall{}[k:\mBbbN{}\msupplus{}].  (Riemann-sum-alt(f;a;b;k)  =  Riemann-sum(f;a;b;k))))
Date html generated:
2016_05_18-AM-10_45_38
Last ObjectModification:
2016_01_17-AM-00_42_13
Theory : reals
Home
Index