Nuprl Lemma : Riemann-sum-alt-req

[a:ℝ]. ∀[b:{b:ℝa ≤ b} ]. ∀[f:[a, b] ⟶ℝ].
  ((∀x,y:ℝ.  ((x ∈ [a, b])  (x y)  ((f y) (f x))))
   (∀[k:ℕ+]. (Riemann-sum-alt(f;a;b;k) Riemann-sum(f;a;b;k))))


Proof




Definitions occuring in Statement :  Riemann-sum-alt: Riemann-sum-alt(f;a;b;k) Riemann-sum: Riemann-sum(f;a;b;k) rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rleq: x ≤ y req: y real: nat_plus: + uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a
Definitions unfolded in proof :  cand: c∧ B rccint: [l, u] i-member: r ∈ I top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) rev_implies:  Q or: P ∨ Q guard: {T} rneq: x ≠ y squash: T exists: x:A. B[x] real: so_apply: x[s] so_lambda: λ2x.t[x] nat_plus: + uimplies: supposing a has-value: (a)↓ Riemann-sum-alt: Riemann-sum-alt(f;a;b;k) and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] implies:  Q sq_stable: SqStable(P) prop: member: t ∈ T uall: [x:A]. B[x] rfun: I ⟶ℝ rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y rge: x ≥ y subtract: m less_than: a < b partition-sum: partition-sum(f;x;p) default-partition-choice: default-partition-choice(p) has-valueall: has-valueall(a) callbyvalueall: callbyvalueall Riemann-sum: Riemann-sum(f;a;b;k) sq_type: SQType(T) nat: full-partition: full-partition(I;p) uniform-partition: uniform-partition(I;k) pointwise-req: x[k] y[k] for k ∈ [n,m] cons: [a b] select: L[n] true: True assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 rsub: y
Lemmas referenced :  rmul-distrib2 rmul-identity1 rminus-as-rmul radd-ac radd-assoc rminus-radd rmul-one-both rminus_functionality rminus_wf rsub-rdiv rsub_functionality add-member-int_seg2 set_subtype_base minus-minus minus-add rsub-int rdiv_functionality select-append lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int mklist_select eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot squash_wf true_wf select_cons_tl append_wf mklist_wf cons_wf nil_wf length_append subtype_rel_list top_wf iff_weakening_equal length-singleton minus-zero add-zero radd-zero-both radd_comm rmul-zero-both rmul_preserves_req list-set-type2 select_wf rsum_functionality full-partition-point-member length_of_cons_lemma left_endpoint_rccint_lemma right_endpoint_rccint_lemma length-append mklist_length le_wf length_of_nil_lemma subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma valueall-type-has-valueall list_wf list-valueall-type real-valueall-type full-partition_wf uniform-partition_wf evalall-reduce valueall-type-real-list rsum_linearity2 rsum'-rsum req_functionality rsum'_wf subtract-add-cancel lelt_wf rsum_wf itermSubtract_wf int_term_value_subtract_lemma zero-add zero-mul add-mul-special add-commutes add-swap minus-one-mul add-associates radd-int rmul_functionality rmul-distrib req_transitivity radd_functionality_wrt_rleq rleq_functionality_wrt_implies radd_functionality rmul_preserves_rleq2 rleq-int decidable__le less_than'_wf rleq_weakening_equal rmul_comm rmul-rdiv-cancel2 req_weakening rleq_functionality uiff_transitivity rmul_preserves_rleq int_seg_properties intformle_wf int_formula_prop_le_lemma int_seg_wf rmul_wf radd_wf subtract_wf set_wf rfun_wf member_rccint_lemma req_wf rccint_wf i-member_wf all_wf req_witness sq_stable__req Riemann-sum-alt_wf rleq_wf Riemann-sum_wf rccint-icompact value-type-has-value nat_plus_wf set-value-type less_than_wf int-value-type real_wf regular-int-seq_wf function-value-type rdiv_wf rsub_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rleq_transitivity rleq_weakening req_inversion and_wf
Rules used in proof :  imageElimination computeAll voidEquality voidElimination isect_memberEquality int_eqEquality dependent_pairFormation unionElimination inrFormation baseClosed imageMemberEquality independent_pairFormation functionEquality natural_numberEquality lambdaEquality intEquality independent_isectElimination callbyvalueReduce sqequalRule productElimination dependent_functionElimination introduction independent_functionElimination because_Cache hypothesis dependent_set_memberEquality hypothesisEquality isectElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution lemma_by_obid cut rename thin setElimination isect_memberFormation lambdaFormation applyEquality multiplyEquality addEquality equalitySymmetry equalityTransitivity axiomEquality minusEquality independent_pairEquality instantiate setEquality cumulativity universeEquality equalityEquality promote_hyp equalityElimination

Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].
    ((\mforall{}x,y:\mBbbR{}.    ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  ((f  y)  =  (f  x))))
    {}\mRightarrow{}  (\mforall{}[k:\mBbbN{}\msupplus{}].  (Riemann-sum-alt(f;a;b;k)  =  Riemann-sum(f;a;b;k))))



Date html generated: 2016_05_18-AM-10_45_38
Last ObjectModification: 2016_01_17-AM-00_42_13

Theory : reals


Home Index