Nuprl Lemma : i-member-finite-closed

I:Interval. (i-closed(I)  i-finite(I)  (∀r:ℝ(r ∈ ⇐⇒ left-endpoint(I)≤r≤right-endpoint(I))))


Proof




Definitions occuring in Statement :  i-member: r ∈ I i-closed: i-closed(I) right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) i-finite: i-finite(I) interval: Interval rbetween: x≤y≤z real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q uimplies: supposing a rbetween: x≤y≤z interval: Interval i-finite: i-finite(I) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt i-member: r ∈ I left-endpoint: left-endpoint(I) pi1: fst(t) endpoints: endpoints(I) outl: outl(x) right-endpoint: right-endpoint(I) pi2: snd(t) i-closed: i-closed(I) bnot: ¬bb bor: p ∨bq bfalse: ff false: False
Lemmas referenced :  i-member_wf rbetween_wf left-endpoint_wf right-endpoint_wf real_wf i-finite_wf i-closed_wf interval_wf i-member-finite
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination productElimination unionElimination sqequalRule voidElimination

Latex:
\mforall{}I:Interval
    (i-closed(I)  {}\mRightarrow{}  i-finite(I)  {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (r  \mmember{}  I  \mLeftarrow{}{}\mRightarrow{}  left-endpoint(I)\mleq{}r\mleq{}right-endpoint(I))))



Date html generated: 2016_05_18-AM-08_41_08
Last ObjectModification: 2015_12_27-PM-11_51_49

Theory : reals


Home Index