Nuprl Lemma : i-member-finite-closed
∀I:Interval. (i-closed(I) ⇒ i-finite(I) ⇒ (∀r:ℝ. (r ∈ I ⇐⇒ left-endpoint(I)≤r≤right-endpoint(I))))
Proof
Definitions occuring in Statement : 
i-member: r ∈ I, 
i-closed: i-closed(I), 
right-endpoint: right-endpoint(I), 
left-endpoint: left-endpoint(I), 
i-finite: i-finite(I), 
interval: Interval, 
rbetween: x≤y≤z, 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
rbetween: x≤y≤z, 
interval: Interval, 
i-finite: i-finite(I), 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
i-member: r ∈ I, 
left-endpoint: left-endpoint(I), 
pi1: fst(t), 
endpoints: endpoints(I), 
outl: outl(x), 
right-endpoint: right-endpoint(I), 
pi2: snd(t), 
i-closed: i-closed(I), 
bnot: ¬bb, 
bor: p ∨bq, 
bfalse: ff, 
false: False
Lemmas referenced : 
i-member_wf, 
rbetween_wf, 
left-endpoint_wf, 
right-endpoint_wf, 
real_wf, 
i-finite_wf, 
i-closed_wf, 
interval_wf, 
i-member-finite
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
productElimination, 
unionElimination, 
sqequalRule, 
voidElimination
Latex:
\mforall{}I:Interval
    (i-closed(I)  {}\mRightarrow{}  i-finite(I)  {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (r  \mmember{}  I  \mLeftarrow{}{}\mRightarrow{}  left-endpoint(I)\mleq{}r\mleq{}right-endpoint(I))))
Date html generated:
2016_05_18-AM-08_41_08
Last ObjectModification:
2015_12_27-PM-11_51_49
Theory : reals
Home
Index