Step
*
2
1
1
2
1
2
1
2
of Lemma
least-upper-bound
1. [A] : {A:ℝ ⟶ ℙ| ∀x,y:ℝ. ((x = y)
⇒ (A x)
⇒ (A y))}
2. ∀x,y:ℝ. ((x < y)
⇒ ((∃a:ℝ. ((A a) ∧ (x < a))) ∨ A ≤ y))
3. a : ℝ
4. b : ℝ
5. A a
6. A < b
7. a ≤ b
8. a' : ℝ
9. b' : ℝ
10. a' < b'
11. a < a'
12. b' < b
13. (b - a') = ((b - a) * (r(2)/r(3)))
14. (b' - a) = ((b - a) * (r(2)/r(3)))
15. c : ℝ
16. a' < c
17. c < b'
18. A ≤ c
⊢ ∃a',b':ℝ. ((A a') ∧ A < b' ∧ (a ≤ a') ∧ (a' ≤ b') ∧ (b' ≤ b) ∧ ((b' - a') ≤ ((b - a) * (r(2)/r(3)))))
BY
{ (InstConcl [⌜a⌝;⌜b'⌝]⋅ THEN Auto)⋅ }
1
1. [A] : {A:ℝ ⟶ ℙ| ∀x,y:ℝ. ((x = y)
⇒ (A x)
⇒ (A y))}
2. ∀x,y:ℝ. ((x < y)
⇒ ((∃a:ℝ. ((A a) ∧ (x < a))) ∨ A ≤ y))
3. a : ℝ
4. b : ℝ
5. A a
6. A < b
7. a ≤ b
8. a' : ℝ
9. b' : ℝ
10. a' < b'
11. a < a'
12. b' < b
13. (b - a') = ((b - a) * (r(2)/r(3)))
14. (b' - a) = ((b - a) * (r(2)/r(3)))
15. c : ℝ
16. a' < c
17. c < b'
18. A ≤ c
19. A a
⊢ A < b'
Latex:
Latex:
1. [A] : \{A:\mBbbR{} {}\mrightarrow{} \mBbbP{}| \mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} (A x) {}\mRightarrow{} (A y))\}
2. \mforall{}x,y:\mBbbR{}. ((x < y) {}\mRightarrow{} ((\mexists{}a:\mBbbR{}. ((A a) \mwedge{} (x < a))) \mvee{} A \mleq{} y))
3. a : \mBbbR{}
4. b : \mBbbR{}
5. A a
6. A < b
7. a \mleq{} b
8. a' : \mBbbR{}
9. b' : \mBbbR{}
10. a' < b'
11. a < a'
12. b' < b
13. (b - a') = ((b - a) * (r(2)/r(3)))
14. (b' - a) = ((b - a) * (r(2)/r(3)))
15. c : \mBbbR{}
16. a' < c
17. c < b'
18. A \mleq{} c
\mvdash{} \mexists{}a',b':\mBbbR{}
((A a') \mwedge{} A < b' \mwedge{} (a \mleq{} a') \mwedge{} (a' \mleq{} b') \mwedge{} (b' \mleq{} b) \mwedge{} ((b' - a') \mleq{} ((b - a) * (r(2)/r(3)))))
By
Latex:
(InstConcl [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b'\mkleeneclose{}]\mcdot{} THEN Auto)\mcdot{}
Home
Index